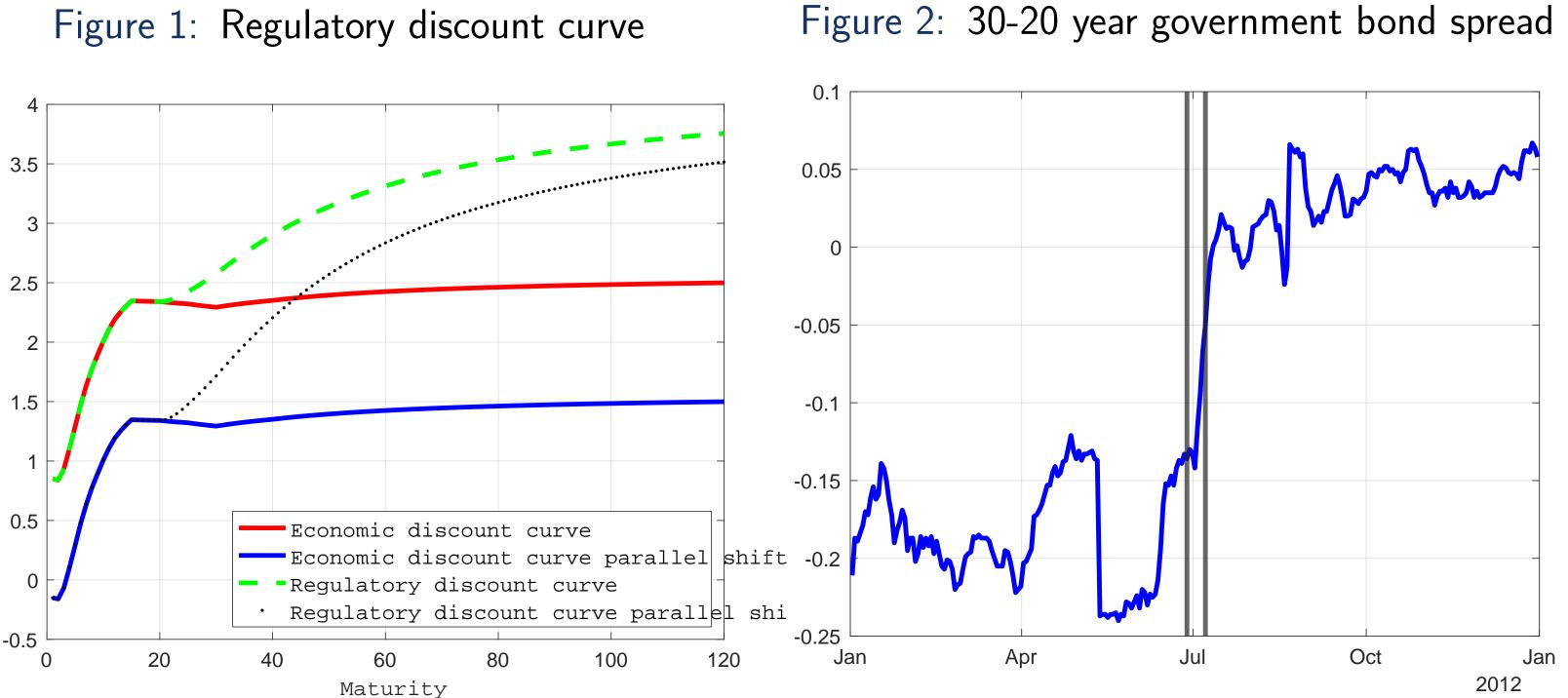
What shapes the yield curve?

- Affine term structure models
- Consumption based models
- Preferred habitat models

What we know

- Pension funds and insurers (P&I) are key investors in government bond markets.
- P&Is' demand for long-term bonds affects yields. • Klingler & Sundaresan (2018); Greenwood & Vissing-Jorgensen (2010; 2018)

What we do not know


- How sizeable are the effects of demand shifts on yields?
- What are the motives behind demand shifts?
- How do different policy changes affect yields?

What I do

- Quantify the shift in demand following a regulatory reform.
- Show that heterogeneity in demand shifts has two drivers.
- Liability duration and regulatory constraints of P&Is
- Estimate the direct effect of demand shifts on changes in yields.

Identification: change in the regulatory discount curve

- P&Is value liabilities and solvency positions using the regulatory discount curve.
- The new regulatory discount curve became a weighted average between market interest rates and a fixed rate (the UFR).

Long-term Investors and the Yield Curve Kristy A.E. Jansen **Tilburg University**

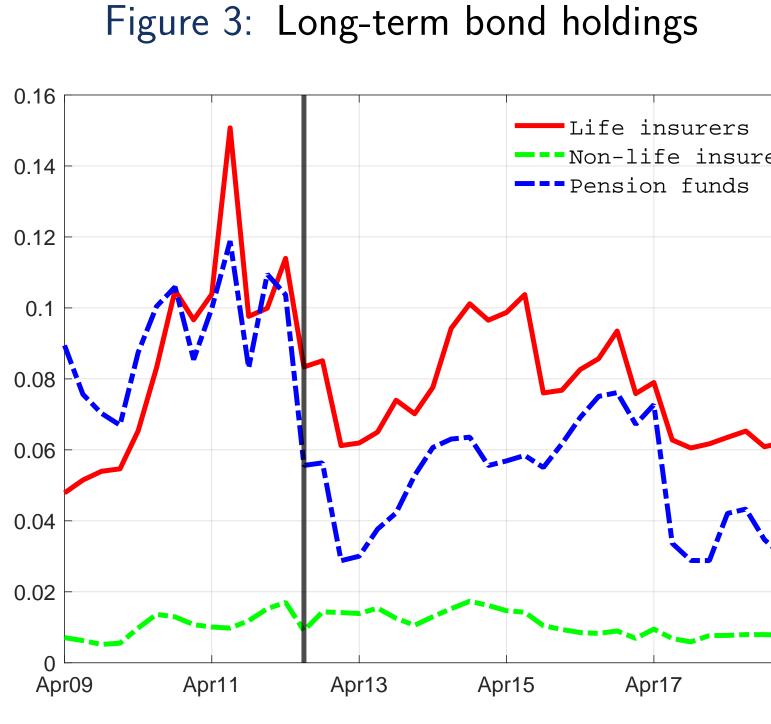
Model to explain demand shifts

 $w_{i,t}^{B*} = \frac{\mathbb{E}_{i,t}[r_{t+1}^B - r_f]}{(\gamma + \lambda(F_{i,t}^R)) \operatorname{Var}_{i,t}[r_{t+1}^B]} + \frac{\gamma}{\gamma + \lambda(F_{i,t}^R)} a_{i,t} \frac{1}{F_{i,t}^E} + \frac{\lambda(F_{i,t}^R)}{\gamma + \lambda(F_{i,t}^R)} (\boldsymbol{\xi_L} \circ a_{i,t}) \frac{1}{F_{i,t}^R},$ speculative portfolio

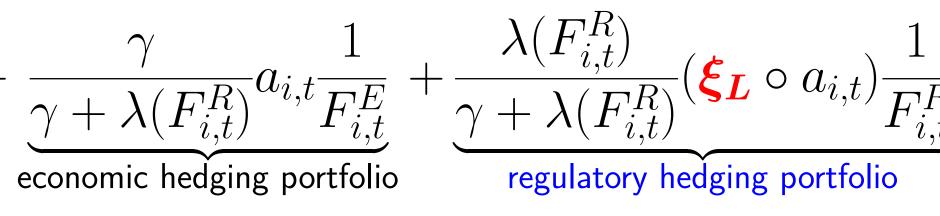
with $a_{i,t}$ the distribution over liabilities; $F_{i,t}^E(F_{i,t}^R)$ the (regulatory) funding ratio. • Regulatory reform changed $\xi_L = 1$ to $\xi_L < 1$ for long maturities.

Two predictions:

- P&Is with long liability durations decrease long-term bond
- holdings more compared to less constraint ones.

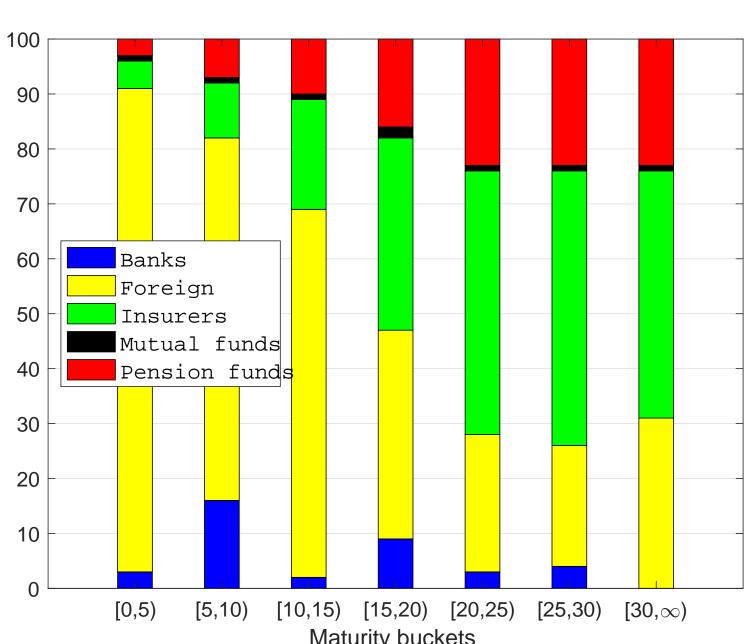

Combining three data sources

- Security holdings database (2009Q1-2019q1) • Pension funds, insurers, banks, and mutual funds in the Netherlands
- CSDB database
- Market information, e.g. price, currency, coupons, maturities, YTM
- Supervision database
- Solvency positions and liability durations of insurers and pension funds


Regulatory reform decreased long-term bond holdings

Testing the two predictions:

 $\mathbf{1} w_{it}^B(h) = \alpha + \beta_0 \mathsf{UFR}_t + \beta_1 \mathsf{UFR}_t \times D_{2012q1,i}^L + \beta_2 \mathsf{Controls}_{it} + \nu_i + \epsilon_{it}(h)$ $2w_{it}^B(h) = \alpha + \beta_0 \mathsf{UFR}_t + \beta_1 \mathsf{UFR}_t \times D_{2012q1,i}^L \times \mathsf{FR}_{2012q1,i}^{-1} + \beta_2 \mathsf{Controls}_{it} + \nu_i + \epsilon_{it}(h)$ where $D^L_{2012q1,i}$ equals the liability duration and $FR^{-1}_{2012q1,i}$ the inverse of the funding ratio prior to the regulatory reform.


• Optimal solution mean-variance problem of assets — liabilities:

holdings more compared to the ones with short liability durations. • P&Is close to their capital requirement decrease bond long-term

	Holdings							
	$T \ge 30$							
UFR	0.0115		0.0128					
	(0.0080)		(0.0088)					
$UFR imes D^L_{2012q1}$	- 0.0023 ***	- 0.0018 ***						
1	(0.0007)	(0.0007)						
$UFR \times D^L_{2012a1} \times$			- 0.0027 ***	-0.0021**				
FR_{2012q1}^{-1}			(0.0009)	(0.0009)				
Controls	Yes	Yes	Yes	Yes				
Fund FE	No	Yes	No	Yes				
Time FE	No	Yes	No	Yes				
N	2,376	2,376	2,349	2,349				
R^2	0.11	0.61	0.11	0.61				

Changes in bond holdings affected long-term yields

Key findings

Policy implications for QE

• Demand curves (Koijen and Yogo 2019; 2020): $\ln w_{i,t}(h)A_t = \ln H_{i,t}(h) = \alpha_i + \beta_{0i}y_t(h) + \beta'_{1i}x_t(h) + \beta_{2i}\ln(H_{i,2009q2}(h))$ $+ \beta_{3i} y_t^{DE} + \epsilon_{i,t}(h).$

• Challenge: we need an instrument for $y_t(h)$. • UFR weights as exogenous demand shocks for each maturity. • The instrument $z_t(h)$ is the average weight assigned to the UFR. • Price elasticity of demand: $\frac{\partial q_{it}(h)}{\partial p_{it}(h)} = 1 + 100 \frac{\beta_{0i}}{T_{ht}} (1 - w_{it}(h)).$

Figure 4: Weights investor types over maturities

Table 2: Price elasticity of demand								
	obs.	mean	std.dev.	min	max			
Banks	209	23.93	25.57	5.67	83.88			
Foreign investors	243	4.53	1.89	1.84	11.28			
Insurance companies	243	-29.95	31.68	-102.44	-6.93			
Mutual funds	243	8.30	6.82	1	22.23			
Pension funds	243	-18.61	20.19	-63.63	-3.9			
Total	2.05							

• Back-of-the-envelope: P&Is sold 22 percent of 30-year Dutch government bonds outstanding. This implies an increase in the **30**-year yield of 22%/2.05/30 = 36 bps.

• P&Is decreased long-term bond holdings by 42% on average. • Effects stronger for long liability durations or binding capital constraints. • The effect on long-term bond yields equals 24 bps on average. • Effect is stronger for longer maturity bonds.

• Mechanism in the way the regulatory reform and QE affect yields is similar \rightarrow shock in demand from preferred habitat investors. • Compared to QE, this regulatory reform unlikely affected expectations \rightarrow well identified evidence for the workings of QE.

• My findings suggest to incorporate the regulatory framework of long-term investors when assessing the effects of QE.