Trade Costs and Inflation Dynamics

Pablo Cuba-Borda Albert Queralto *

Ricardo Reyes-Heroles[†] Mikaël Scaramucci[‡]

*Federal Reserve Board †Federal Reserve Bank of Dallas †UCLA

September 23, 2025 Bank of Canada - European Central Bank Conference

The views expressed in this presentation are those of the authors and do not necessarily reflect the position of the Federal Reserve Board or the Federal Reserve System.

Globalization, Trade Disruptions, and the Macroeconomy

- Deeply interconnected global economy
- ► Trade disruptions, that is, shocks to broadly-defined **trade costs**, have important macroeconomic consequences, particularly for **inflation**.
 - Trade policies, supply-chain disruptions, geopolitical tensions, etc.
- Limited understanding of how trade costs affect inflation
 - → Relative and/or agg. prices? One-time increase? Inflation persistence?
 - Studies focus on the real effects of trade costs
 - Divide between international trade and workhorse international monetary models
 - First-order relevance for policy (reasonable positive view

Globalization, Trade Disruptions, and the Macroeconomy

- Deeply interconnected global economy
- ► Trade disruptions, that is, shocks to broadly-defined **trade costs**, have important macroeconomic consequences, particularly for **inflation**.
 - Trade policies, supply-chain disruptions, geopolitical tensions, etc.
- Limited understanding of how trade costs affect inflation
 - → Relative and/or agg. prices? One-time increase? Inflation persistence?
 - Studies focus on the real effects of trade costs
 - Divide between international trade and workhorse international monetary models.
 - First-order relevance for policy (reasonable positive view)

- Question: How do trade costs affect inflation dynamics in a global economy?
 - → Higher costs $\Rightarrow \downarrow$ supply shock (↑ π , \downarrow Y), \Rightarrow trade in intermediate key for transmission and magnitudes

1. Empirical analysis

- Gravity + World IO data ⇒ bilateral trade costs, final & interm. (41 countries, 95-20)
 → Aggregate bilateral costs ⇒ import costs.
- Panel LPs (Jordà, 2005) ⇒ variation across time and space in import costs
 → Estimate effects on CPI inflation. GDP.

2. Model development, calibration, and test

- Dynamic multictry GE model → trade in final and interm. (gravity) + sticky prices.
- Calibrate, test against empirical results, and unpack mechanisms

3. Model experiments

🕒 Monetary pol. alternatives / 2018-19 U.S.-China trade war / Post-Pandemic inflation.

- Question: How do trade costs affect inflation dynamics in a global economy?
 - → Higher costs $\Rightarrow \downarrow$ supply shock ($\uparrow \pi, \downarrow Y$), \Rightarrow trade in intermediate key for transmission and magnitudes

1. Empirical analysis:

- Gravity + World IO data ⇒ bilateral trade costs, final & interm. (41 countries, 95-20)
 → Aggregate bilateral costs ⇒ import costs.
- Panel LPs (Jordá, 2005) ⇒ variation across time and space in import costs
 → Estimate effects on CPI inflation. GDP....

2. Model development, calibration, and test:

- Dynamic multictry GE model → trade in final and interm. (gravity) + sticky prices.
- Calibrate, test against empirical results, and unpack mechanisms.

3. Model experiments

🕝 Monetary pol. alternatives / 2018-19 U.S.-China trade war / Post-Pandemic inflation

- Question: How do trade costs affect inflation dynamics in a global economy?
 - → Higher costs $\Rightarrow \downarrow$ supply shock ($\uparrow \pi, \downarrow Y$), \Rightarrow trade in intermediate key for transmission and magnitudes

1. Empirical analysis:

- Gravity + World IO data ⇒ bilateral trade costs, final & interm. (41 countries, 95-20)
 → Aggregate bilateral costs ⇒ import costs.
- Panel LPs (Jordà, 2005) ⇒ variation across time and space in import costs
 → Estimate effects on CPI inflation, GDP....

2. Model development, calibration, and test

- Dynamic multictry GE model → trade in final and interm. (gravity) + sticky prices
- Calibrate, test against empirical results, and unpack mechanisms.

3. Model experiments

- Monetary pol. alternatives / 2018-19 U.S.-China trade war / Post-Pandemic inflation

- Question: How do trade costs affect inflation dynamics in a global economy?
 - → Higher costs $\Rightarrow \downarrow$ supply shock ($\uparrow \pi, \downarrow Y$), \Rightarrow trade in intermediate key for transmission and magnitudes

1. Empirical analysis

- Gravity + World IO data ⇒ bilateral trade costs, final & interm. (41 countries, 95-20)
 - Panel LPs (Jordà, 2005) ⇒ variation across time and space in import cos
 - → Estimate effects on CPI inflation, GDP,...

2. Model development, calibration, and test:

- Dynamic multictry GE model \rightarrow trade in final and interm. (gravity) + sticky prices.
- Calibrate, test against empirical results, and unpack mechanisms.

Model experiments

- Monetary pol. alternatives / 2018-19 U.S.-China trade war / Post-Pandemic inflation

- Question: How do trade costs affect inflation dynamics in a global economy?
 - → Higher costs $\Rightarrow \downarrow$ supply shock ($\uparrow \pi, \downarrow Y$), \Rightarrow trade in intermediate key for transmission and magnitudes

1. Empirical analysis

- Gravity + World IO data ⇒ bilateral trade costs, final & interm. (41 countries, 95-20)
 → Aggregate bilateral costs ⇒ import costs.
 - Panel LPs (Jordā, 2005) ⇒ variation across time and space in import costs

 → Estimate effects on CPI inflation. GDP.....

2. Model development, calibration, and test:

- Dynamic multictry GE model → trade in final and interm. (gravity) + sticky prices.
 Calibrate, test against empirical results, and unpack mechanisms.
- 3. Model experiments:
 - Monetary pol. alternatives / 2018-19 U.S.-China trade war / Post-Pandemic inflation.

- **Question:** How do trade costs affect inflation dynamics in a global economy?
 - → Higher costs $\Rightarrow \downarrow$ supply shock ($\uparrow \pi, \downarrow Y$), \Rightarrow trade in intermediate key for transmission and magnitudes

1. Empirical analysis:

- Gravity + World IO data ⇒ bilateral trade costs, final & interm. (41 countries, 95-20)
 → Aggregate bilateral costs ⇒ import costs.
- Panel LPs (Jordà, 2005) ⇒ variation across time and space in import costs
 → Estimate effects on CPI inflation, GDP....

2. Model development, calibration, and test:

- Dynamic multictry GE model → trade in final and interm. (gravity) + sticky prices.
- Calibrate, test against empirical results, and unpack mechanisms.

3. Model experiments:

- Monetary pol. alternatives / 2018-19 U.S.-China trade war / Post-Pandemic inflation.

Preview of Key Results (and some existing literature)

- ► Empirical Analysis Barattieri-Cacciatore-Ghironi (2021), Furceri et al. (2020),...
 - Higher import costs $\Rightarrow \uparrow \pi (\downarrow Y)$ and π dynamics depend type of shock:
 - + Final goods → large but short-lived inflation
 - + Intermediate inputs → smaller but longer-lasting inflation
- ▶ Model Comin-Johnson (2022), di Giovanni et al. (2024), Kalemli-Ozcan et al. (2025), Auclert et al. (2025),...
 - Model replicates estimated inflation and GDP dynamics.
 - \star Higher costs intermediates \to persistent \uparrow firms' MCs \to persist in crease in π .
 - + U.S.: 10 p.p. \uparrow in total import costs \Rightarrow 0.8 p.p. \uparrow in π on impact, persists for extra three years
- ► Model experiments Bianchi & Coulibaly (2025), Werning-Lorenzoni-Guerrieri (2025),...
 - Features of model key to understand that...
 - + Intermediates undo advantage of PPI targeting ("look-through" MP),
 - U.S.-China 18-19 trade war: U.S. CPI † by more than 0.4 percent due to persistence,
 - Trade costs: (i) prevented deflation during COVID-19 and (ii) increased inflation in 2022-23.

Preview of Key Results (and some existing literature)

- ► Empirical Analysis Barattieri-Cacciatore-Ghironi (2021), Furceri et al. (2020),...
 - Higher import costs $\Rightarrow \uparrow \pi (\downarrow Y)$ and π dynamics depend type of shock:
 - + Final goods → large but short-lived inflation
 - + Intermediate inputs → smaller but longer-lasting inflation
- Model Comin-Johnson (2022), di Giovanni et al. (2024), Kalemli-Ozcan et al. (2025), Auclert et al. (2025),...
 - Model replicates estimated inflation and GDP dynamics.
 - + Higher costs intermediates → persistent ↑ firms' MCs → persist in crease in π .
 - + U.S.: 10 p.p. \uparrow in total import costs \Rightarrow 0.8 p.p. \uparrow in π on impact, persists for extra three years.
- ► Model experiments Bianchi & Coulibaly (2025), Werning-Lorenzoni-Guerrieri (2025),...
 - Features of model key to understand that...
 - + Intermediates undo advantage of PPI targeting ("look-through" MP),
 - ◆ U.S.-China 18-19 trade war: U.S. CPI↑ by more than 0.4 percent due to persistence
 - Trade costs: (i) prevented deflation during COVID-19 and (ii) increased inflation in 2022-23.

Preview of Key Results (and some existing literature)

- ► Empirical Analysis Barattieri-Cacciatore-Ghironi (2021), Furceri et al. (2020),...
 - Higher import costs $\Rightarrow \uparrow \pi (\downarrow Y)$ and π dynamics depend type of shock:
 - + Final goods → large but short-lived inflation
 - + Intermediate inputs → smaller but longer-lasting inflation
- ▶ Model Comin-Johnson (2022), di Giovanni et al. (2024), Kalemli-Ozcan et al. (2025), Auclert et al. (2025),...
 - Model replicates estimated inflation and GDP dynamics.
 - + Higher costs intermediates → persistent ↑ firms' MCs → persist in crease in π .
 - + U.S.: 10 p.p. \uparrow in total import costs \Rightarrow 0.8 p.p. \uparrow in π on impact, persists for extra three years.
- ► Model experiments Bianchi & Coulibaly (2025), Werning-Lorenzoni-Guerrieri (2025),...
 - Features of model key to understand that...
 - + Intermediates undo advantage of PPI targeting ("look-through" MP),
 - + U.S.-China 18-19 trade war: U.S. CPI † by more than 0.4 percent due to persistence,
 - + Trade costs: (i) prevented deflation during COVID-19 and (ii) increased inflation in 2022-23.

Measuring Trade Costs

Armington Model of Trade

- ▶ Global economy comprised of countries indexed $i, h \in \mathcal{I} = \{1, ..., N\}$.
 - * Each country produces a single tradable good
- ► Goods used as either final consumption (C) or intermediate production inputs (M).
- Differentiated goods aggregated as

$$Q_{i,t} = \left(\sum_{h=1}^{N} (Q_{ih,t})^{\frac{\eta^{Q}-1}{\eta^{Q}}}\right)^{\frac{\eta^{Q}}{\eta^{Q}-1}}, \ \ Q \in \{C, M\}$$

- ▶ **Trade costs**: Delivering 1 unit requires shipping $\tau_{iht}^Q \ge 1$ units ($\tau_{iit}^Q = 1$).
- Assume law of one price holds.

Measuring Trade Costs (Cont'd)

- ► Let $X_{ih,t}^Q \equiv P_{ih,t}^Q Q_{ih,t}, X_{i,t}^Q = \sum_{h=1}^N X_{ih,t}^Q$.
- ► Cost minimization → **Gravity**:

$$\frac{X_{ih,t}^Q}{X_{i,t}^Q} \equiv \omega_{ih,t}^Q = \left(\frac{\tau_{ih,t}^Q P_{ih,t}}{P_{i,t}^Q}\right)^{-(\eta^2 - 1)}, \quad P_{ih,t} \equiv \mathcal{E}_{ih,t} P_{h,t}$$

Combine to obtain measure of trade costs between country pairs (Head-Ries index):

$$\mathcal{T}_{ih,t}^{Q} \equiv \left(\tau_{ih,t}^{Q} \tau_{hi,t}^{Q}\right)^{\frac{1}{2}} = \left(\frac{\omega_{ih,t}}{\omega_{hh,t}} \frac{\omega_{hi,t}}{\omega_{ii,t}}\right)^{-\frac{1}{2(\eta^{Q}-1)}}$$

Takeaway: Bilateral expenditure shares + trade elasticity → measure of trade costs.

Data

OECD ICIO Tables (World Input-Output Database):

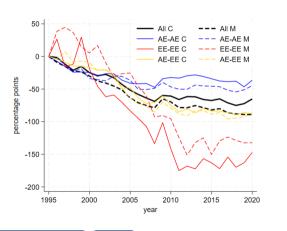
- Yearly data:
 - * ICIO: 1995-2020, 41 countries, 16 non-service sectors (consistent with WIOD).
- Construct bilateral trade costs for final goods and intermediate inputs.

World Development Indicators:

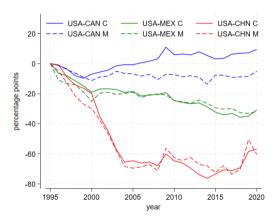
► CPI inflation, Real GDP, Real Exports, Real Imports, Real Exchange Rate.

Global Crises Database:

Country-specific controls for currency and banking crises.


Trade elasticity:

ho $\eta \equiv \eta^{
m C} = \eta^{
m M} =$ 5 Head-Ries (2001), Simonovska-Waugh (2014), Caliendo-Parro (2014)

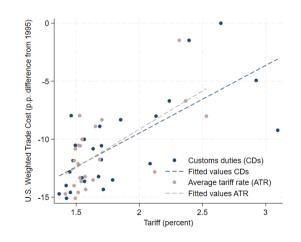

Bilateral Trade Costs Across Time and Space

Costs vary over time—reflecting integration—across space—in line with development—and reflect changes in trade policy

 Δ in trade costs, main U.S. trade partners

Import Costs

Measured trade costs correlate with import tariffs


 Aggregate bilateral trade costs to country-level import costs using import shares:

$$\tau_{i,t}^{Q} = \sum_{h=1}^{N} \left(\frac{X_{ih,t}^{Q}}{\sum_{k \neq i} X_{ik,t}^{Q}} \right) \mathcal{T}_{ih,t}^{Q}$$

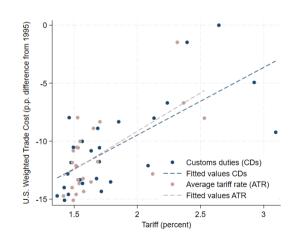
for $Q \in \{C, M\}$.

* Estimate $\hat{\beta}=$ 1.1 from

$$\log \tau_{i,t} = \alpha_i + \beta \log(1 + tariff_{i,t}) + \varepsilon_{i,t}$$

Import Costs

Measured trade costs correlate with import tariffs


 Aggregate bilateral trade costs to country-level import costs using import shares:

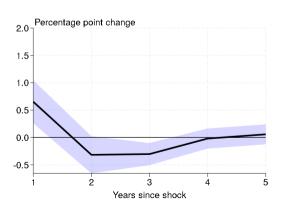
$$\tau_{i,t}^{Q} = \sum_{h=1}^{N} \left(\frac{X_{ih,t}^{Q}}{\sum_{k \neq i} X_{ik,t}^{Q}} \right) \mathcal{T}_{ih,t}^{Q}$$

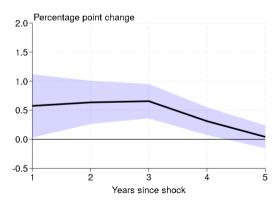
for $Q \in \{C, M\}$.

* Estimate $\hat{\beta} = 1.1$ from

$$\log \tau_{i,t} = \alpha_i + \beta \log (1 + \textit{tariff}_{i,t}) + \varepsilon_{i,t}.$$

How do trade cost shocks affect inflation? Scatter

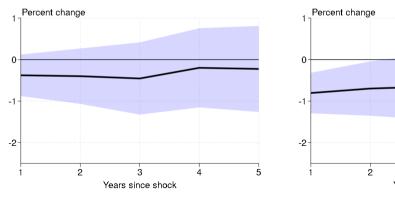

$$\pi_{i,t+h} = \delta_{i,h}^Q + \delta_{t,h}^Q + \beta_h^Q \cdot \Delta \tau_{i,t}^Q + \gamma_h^Q \cdot \Delta \tau_{i,t}^{\emptyset} + \Gamma_{h}^{\prime Q} Z_{i,t-1} + \varepsilon_{i,t+h}^Q \qquad \text{for } h \geq 1, \quad Q = \{C,M\}.$$

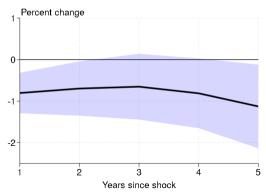

How do trade cost shocks affect inflation? Scatter

$$\pi_{i,t+h} = \delta_{i,h}^Q + \delta_{t,h}^Q + \beta_h^Q \cdot \Delta \tau_{i,t}^Q + \gamma_h^Q \cdot \Delta \tau_{i,t}^Q + \Gamma_{h}'^Q Z_{i,t-1} + \varepsilon_{i,t+h}^Q \qquad \text{for } h \geq 1, \quad Q = \{C,M\}.$$

Inflation response, final's trade costs

Inflation response, interm.'s trade costs




GDP Effects: Trade cost shocks are negative supply shocks

$$\log \mathsf{GDP}_{i,t+h} - \log \mathsf{GDP}_{i,t} = \delta_{i,h}^Q + \delta_{t,h}^Q + \beta_h^Q \cdot \Delta \tau_{i,t}^Q + \gamma_h^Q \cdot \Delta \tau_{i,t}^\emptyset + \Gamma_h'^Q Z_{i,t-1} + \varepsilon_{i,t+h}^Q \text{ for } h \geq 1, Q = \{\mathsf{C},\mathsf{M}\}.$$

GDP response, final's trade costs

GDP response, interm.'s trade costs

Model Overview

- Multi-Country New Keynesian + Trade Model.
 - * N = 5 countries (U.S., China, Asia excl. China, AFE, ROW).
- o New Keynesian bloc:
 - * Nominal rigidity in prices and wages.
 - * Labor and intermediate inputs—domestic and imported—used in production.
- o Trade bloc:
 - * Armington model of trade in final consumption and intermediate inputs.
 - * Iceberg trade costs in final consumption and intermediate inputs.

Unit continuum of households indexed by ℓ in each country i maximize:

$$\begin{aligned} \max \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta^{t} \Big[U_{i}(C_{i,t}) - V_{i}(L_{i,t}^{\ell}) \Big], \qquad C_{i,t} &= \left(\sum_{h=1}^{N} C_{ih,t}^{\frac{\eta^{C}-1}{\eta^{C}}} \right)^{\frac{\eta^{T}}{\eta^{C}-1}}. \\ s.t. \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{C} P_{ih,t}^{} C_{ih,t} + B_{ii,t}^{} + \frac{B_{ii,t}^{}}{\mathcal{E}_{1i,t}^{}}} &\leq W_{i,t}^{\ell} L_{i,t}^{\ell} + R_{i,t-1} B_{ii,t-1}^{} + R_{1,t-1} \Psi_{i,t-1}^{} \frac{B_{ii,t-1}^{}}{\mathcal{E}_{1i,t}^{}} + T_{i,t}^{}, \end{aligned}$$

Unit continuum of households indexed by ℓ in each country i maximize:

$$\begin{aligned} \max \mathbb{E}_{O} \sum_{t=0}^{\infty} \beta^{t} \Big[U_{i}(C_{i,t}) - V_{i}(L_{i,t}^{\ell}) \Big], \qquad C_{i,t} &= \left(\sum_{h=1}^{N} C_{ih,t} \frac{\eta^{C} - 1}{\eta^{C}} \right)^{\frac{\eta^{C}}{\eta^{C} - 1}}. \\ \text{s.t.} \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{C} P_{ih,t}^{ih,t} C_{ih,t} + B_{ii,t}}_{P_{ih,t}^{C}} + \underbrace{B_{i1,t}}_{\mathcal{E}_{1i,t}} &\leq W_{i,t}^{\ell} L_{i,t}^{\ell} + R_{i,t-1} B_{ii,t-1} + R_{1,t-1} \Psi_{i,t-1} \frac{B_{i1,t-1}}{\mathcal{E}_{1i,t}} + T_{i,t}, \end{aligned}$$

- o η^{c} : Elasticicity of substitution for final goods (trade elasticity = η^{c} 1)
- o $P_{ih,t}$: price in LCUs at which good produced in h is sold in i (at the dock)
- o $\tau_{ih,t}^{\mathcal{C}} = d_{ih,t}^{\mathcal{C}}(1 + t_{ih,t}^{\mathcal{C}})$: trade cost (iceberg cost + add-valorem tariff)
- o $P_{ih,t}^{C}$: price in LCUs at which good produced in h is sold in i (cum-trade-costs)

Risk premium Wage setting

Unit continuum of households indexed by ℓ in each country i maximize:

$$\begin{aligned} \max \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta^{t} \Big[U_{i}(C_{i,t}) - V_{i}(L_{i,t}^{\ell}) \Big], \qquad C_{i,t} &= \left(\sum_{h=1}^{N} C_{ih,t} \frac{\eta^{C}_{-1}}{\eta^{C}} \right)^{\frac{\eta^{C}}{\eta^{C}_{-1}}}. \\ \text{s.t.} \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{C} P_{ih,t}}_{P_{ih,t}^{C}} C_{ih,t} + B_{ii,t} + \frac{B_{i1,t}}{\mathcal{E}_{1i,t}} \leq W_{i,t}^{\ell} L_{i,t}^{\ell} + R_{i,t-1} B_{ii,t-1} + R_{1,t-1} \Psi_{i,t-1} \frac{B_{i1,t-1}}{\mathcal{E}_{1i,t}} + T_{i,t}, \end{aligned}$$

- o η^{c} : Elasticicity of substitution for final goods (trade elasticity = η^{c} 1)
- o $P_{ih,t}$: price in LCUs at which good produced in h is sold in i (at the dock)
- o $\tau_{ih,t}^{C} = d_{ih,t}^{C} (1 + t_{ih,t}^{C})$: trade cost (iceberg cost + add-valorem tariff)
- o $P_{ih,t}^{C}$: price in LCUs at which good produced in h is sold in i (cum-trade-costs)

Unit continuum of households indexed by ℓ in each country i maximize:

$$\begin{aligned} \max \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta^{t} \Big[U_{i}(C_{i,t}) - V_{i}(L_{i,t}^{\ell}) \Big], \qquad C_{i,t} &= \left(\sum_{h=1}^{N} C_{ih,t} \frac{\eta^{C} - 1}{\eta^{C}} \right)^{\frac{\eta^{C}}{\eta^{C} - 1}}. \\ \text{s.t.} \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{C} P_{ih,t}^{ih,t}}_{P_{ih,t}^{C}} C_{ih,t} + B_{ii,t} + \frac{B_{i1,t}}{\mathcal{E}_{1i,t}} \leq W_{i,t}^{\ell} L_{i,t}^{\ell} + R_{i,t-1} B_{ii,t-1} + R_{1,t-1} \Psi_{i,t-1} \frac{B_{i1,t-1}}{\mathcal{E}_{1i,t}} + T_{i,t}, \end{aligned}$$

- o η^{c} : Elasticicity of substitution for final goods (trade elasticity = η^{c} 1)
- o $P_{ih,t}$: price in LCUs at which good produced in h is sold in i (at the dock)
- o $\tau_{ih,t}^{\mathcal{C}} = d_{ih,t}^{\mathcal{C}} (1 + t_{ih,t}^{\mathcal{C}})$: trade cost (iceberg cost + add-valorem tariff)
- o $P_{ih,t}^{c}$: price in LCUs at which good produced in h is sold in i (cum-trade-costs)

Unit continuum of households indexed by ℓ in each country i maximize:

$$\begin{aligned} \max \mathbb{E}_{o} \sum_{t=o}^{\infty} \beta^{t} \Big[U_{i}(C_{i,t}) - V_{i}(L_{i,t}^{\ell}) \Big], \qquad C_{i,t} &= \left(\sum_{h=1}^{N} C_{ih,t} \frac{\eta^{C}_{-1}}{\eta^{C}} \right)^{\frac{\eta^{C}}{\eta^{C}_{-1}}}. \\ \text{s.t.} \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{C} P_{ih,t}^{ih,t} C_{ih,t} + B_{ii,t}}_{P_{ih,t}^{C}} + \underbrace{B_{i1,t}}_{\mathcal{E}_{1i,t}} &\leq W_{i,t}^{\ell} L_{i,t}^{\ell} + R_{i,t-1} B_{ii,t-1} + R_{1,t-1} \Psi_{i,t-1} \frac{B_{i1,t-1}}{\mathcal{E}_{1i,t}} + T_{i,t}, \end{aligned}$$

- o η^{c} : Elasticicity of substitution for final goods (trade elasticity = η^{c} 1)
- o $P_{ih,t}$: price in LCUs at which good produced in h is sold in i (at the dock)
- o $\tau_{ih,t}^{C} = d_{ih,t}^{C} (1 + t_{ih,t}^{C})$: trade cost (iceberg cost + add-valorem tariff)
- o $P_{ih,t}^{C}$: price in LCUs at which good produced in h is sold in i (cum-trade-costs)

Risk premium Wage setting

Unit continuum of differentiated firms indexed by j in each i have technology

$$Y_{i,t}^{j} = \left[(1-\nu)^{\frac{1}{\varepsilon_{y}}} \mathsf{L}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} + \nu^{\frac{1}{\varepsilon_{y}}} \mathsf{M}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} \right]^{\frac{\varepsilon_{y}}{\varepsilon_{y}-1}},$$

$$\mathsf{Domestic labor input}$$

$$\mathsf{Traded intermediate input}$$

Unit continuum of differentiated firms indexed by j in each i have technology

$$Y_{i,t}^{j} = \left[(1-\nu)^{\frac{1}{\varepsilon_{y}}} \mathsf{L}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} + \nu^{\frac{1}{\varepsilon_{y}}} \mathsf{M}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} \right]^{\frac{\varepsilon_{y}}{\varepsilon_{y}-1}},$$
Domestic labor input

Unit continuum of differentiated firms indexed by *j* in each *i* have technology

$$Y_{i,t}^{j} = \left[(1-\nu)^{\frac{1}{\varepsilon_{y}}} \mathsf{L}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} + \nu^{\frac{1}{\varepsilon_{y}}} \mathsf{M}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} \right]^{\frac{\varepsilon_{y}}{\varepsilon_{y}-1}},$$
Domestic labor input

Intermediate input sourcing:
$$\min_{M_{ih,t}} \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{M} P_{ih,t}}_{P_{ih,t}^{M}} M_{ih,t}$$
 s.t. $M_{i,t} = \left[\sum_{h=1}^{N} M_{ih,t} \frac{n^{M}-1}{n^{M}}\right]^{\frac{n^{M}}{n^{M}-1}}$.

Unit continuum of differentiated firms indexed by j in each i have technology

$$Y_{i,t}^{j} = \left[(1-\nu)^{\frac{1}{\varepsilon_{y}}} \mathsf{L}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} + \nu^{\frac{1}{\varepsilon_{y}}} \mathsf{M}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} \right]^{\frac{\varepsilon_{y}}{\varepsilon_{y}-1}},$$

$$\mathsf{Domestic labor input}$$

$$\mathsf{Traded intermediate input}$$

Intermediate input sourcing:
$$\min_{M_{ih,t}} \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{M} P_{ih,t}}_{P_{ih,t}^{M}} M_{ih,t}$$
 s.t. $M_{i,t} = \left[\sum_{h=1}^{N} M_{ih,t} \frac{\frac{\eta^{M}-1}{\eta^{M}}}{\eta^{M}-1}\right]^{\frac{\eta^{M}}{\eta^{M}-1}}$.

- o $\eta^{\rm M}$: Elasticicity of substitution for intermediate inputs (trade elasticity = $\eta_{\rm M}$ 1)
- o P_{ih t}: price in LCUs at which good produced in h is sold in i (at the dock
- o $\tau_{ih,t}^{M} = d_{ih,t}^{M} (1 + t_{ih,t}^{M})$ trade cost (iceberg cost + add-valorem tariff)
- P_{ih}^{M} : price in LCUs at which good produced in h is sold in i (cum-trade-costs)

Unit continuum of differentiated firms indexed by *j* in each *i* have technology

$$Y_{i,t}^{j} = \left[(1-\nu)^{\frac{1}{\varepsilon_{y}}} \mathsf{L}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} + \nu^{\frac{1}{\varepsilon_{y}}} \mathsf{M}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} \right]^{\frac{\varepsilon_{y}}{\varepsilon_{y}-1}},$$

$$\mathsf{Domestic labor input}$$

$$\mathsf{Traded intermediate input}$$

Intermediate input sourcing:
$$\min_{M_{ih,t}} \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{M} P_{ih,t}}_{P_{ih,t}^{M}} M_{ih,t}$$
 s.t. $M_{i,t} = \left[\sum_{h=1}^{N} M_{ih,t} \frac{\eta_{ih,t}^{M-1}}{\eta_{ih,t}^{M}}\right]^{\frac{\eta_{ih,t}^{M}}{\eta_{ih,t}^{M-1}}}$.

- o η^{M} : Elasticicity of substitution for intermediate inputs (trade elasticity = η_{M} 1)
- o P_{ih t}: price in LCUs at which good produced in h is sold in i (at the dock)
- o $\tau_{iht}^M = d_{iht}^M (1 + t_{iht}^M)$ trade cost (iceberg cost + add-valorem tariff)
- P_{ih}^{M} : price in LCUs at which good produced in h is sold in i (cum-trade-costs)

Unit continuum of differentiated firms indexed by *j* in each *i* have technology

$$Y_{i,t}^{j} = \left[(1-\nu)^{\frac{1}{\varepsilon_{y}}} \mathsf{L}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} + \nu^{\frac{1}{\varepsilon_{y}}} \mathsf{M}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} \right]^{\frac{\varepsilon_{y}}{\varepsilon_{y}-1}},$$

$$\mathsf{Domestic\ labor\ input}$$

$$\mathsf{Traded\ intermediate\ input}$$

Intermediate input sourcing:
$$\min_{M_{ih,t}} \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{M} P_{ih,t}}_{P_{ih,t}^{M}} M_{ih,t}$$
 s.t. $M_{i,t} = \left[\sum_{h=1}^{N} M_{ih,t} \frac{\tau_{ih,t}^{M-1}}{\tau_{ih,t}^{M}}\right]^{\frac{\eta^{M}}{\eta^{M}-1}}$.

- o $\eta^{\rm M}$: Elasticicity of substitution for intermediate inputs (trade elasticity = $\eta_{\rm M}$ 1)
- o P_{ih t}: price in LCUs at which good produced in h is sold in i (at the dock)
- o $\tau_{ih.t}^{M} = d_{ih.t}^{M} (1 + t_{ih.t}^{M})$ trade cost (iceberg cost + add-valorem tariff)
- $P_{ih,t}^{M}$: price in LCUs at which good produced in h is sold in i (cum-trade-costs)

Unit continuum of differentiated firms indexed by j in each i have technology

$$Y_{i,t}^{j} = \left[(1-\nu)^{\frac{1}{\varepsilon_{y}}} \mathsf{L}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} + \nu^{\frac{1}{\varepsilon_{y}}} \mathsf{M}_{i,t}^{j}^{\frac{\varepsilon_{y}-1}{\varepsilon_{y}}} \right]^{\frac{\varepsilon_{y}}{\varepsilon_{y}-1}},$$

$$\mathsf{Domestic labor input}$$

$$\mathsf{Traded intermediate input}$$

Intermediate input sourcing:
$$\min_{M_{ih,t}} \sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{M} P_{ih,t}}_{P_{ih,t}^{M}} M_{ih,t}$$
 s.t. $M_{i,t} = \left[\sum_{h=1}^{N} M_{ih,t} \frac{\eta_{ih,t}^{M-1}}{\eta_{ih,t}^{M}}\right]^{\frac{\eta_{ih,t}^{M}}{\eta_{ih,t}^{M-1}}}$.

- o η^{M} : Elasticicity of substitution for intermediate inputs (trade elasticity = η_{M} 1)
- o P_{ih t}: price in LCUs at which good produced in h is sold in i (at the dock)
- o $\tau_{iht}^M = d_{iht}^M (1 + t_{iht}^M)$ trade cost (iceberg cost + add-valorem tariff)
- o P_{ih}^{M} : price in LCUs at which good produced in h is sold in i (cum-trade-costs)

Retail firms: final tradable good producers

o Produce homogeneous output $Y_{i,t}$ aggregating domestic varieties:

$$Y_{i,t} = \left(\int_{0}^{1} Y_{i,t}^{j} \frac{\frac{\epsilon - 1}{\epsilon}}{\epsilon} dj\right)^{\frac{\epsilon}{\epsilon - 1}}$$

Homogeneous output → used domestically (consumption or input) or exported

- o Perfectly competitive firms in international markets $\Rightarrow P_{ii,t} = MC_{i,t}$ in LCUs and LOP holds.
- o **Domestic price setting:** Firms face nominal rigidities and can only reset prices with probability θ .

Monetary Policy and Market Clearing

Retail firms: final tradable good producers

o Produce homogeneous output $Y_{i,t}$ aggregating domestic varieties:

$$Y_{i,t} = \left(\int_{0}^{1} Y_{i,t}^{j} \frac{\epsilon - 1}{\epsilon} dj\right)^{\frac{\epsilon}{\epsilon - 1}}$$

Homogeneous output → used domestically (consumption or input) or exported

- o Perfectly competitive firms in international markets $\Rightarrow P_{ii,t} = MC_{i,t}$ in LCUs and LOP holds.
- o **Domestic price setting:** Firms face nominal rigidities and can only reset prices with probability θ .

Monetary Policy and Market Clearing

Retail firms: final tradable good producers

o Produce homogeneous output $Y_{i,t}$ aggregating domestic varieties:

$$Y_{i,t} = \left(\int_{0}^{1} Y_{i,t}^{j} \frac{\epsilon - 1}{\epsilon} dj\right)^{\frac{\epsilon}{\epsilon - 1}}$$

Homogeneous output → used domestically (consumption or input) or exported

- o Perfectly competitive firms in international markets $\Rightarrow P_{ii,t} = MC_{i,t}$ in LCUs and LOP holds.
- o **Domestic price setting:** Firms face nominal rigidities and can only reset prices with probability θ .

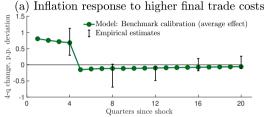
Monetary Policy and Market Clearing

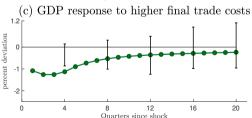
Calibration

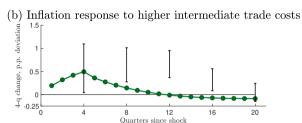
Calibration strategy emphasizes common mechanisms at play

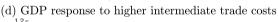
- Country heterogeneity only in trade shares and pop. size.
- Assume trade costs are of the form

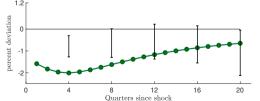
$$au_{ih,t}^{\mathit{Q}} = \left(\omega_{ih}^{\mathit{Q}}
ight)^{rac{1}{1-\eta_{\mathit{Q}}}} arepsilon_{ih,t}^{\mathit{Q}}$$

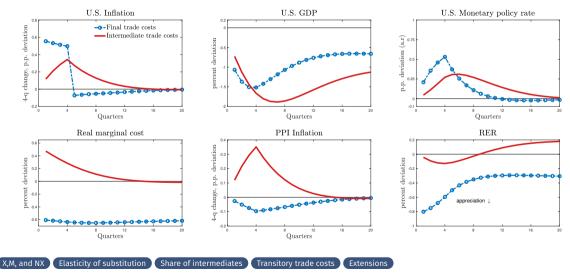

where ω_{ih}^Q are time-invariant and $\sum_{h=1}^N \omega_{ih}^Q =$ 1, and $\varepsilon_{ih,t}^Q$ are stationary shocks.


- ► Log-linear approximation of model around its steady state under balanced trade.
 - * Balanced trade (NX = 0) \Rightarrow calibrate half of ω s, rest determined by restrictions.
- Households' preferences:


$$U_{i}(C_{i,t},C_{i,t-1}) = \frac{(C_{i,t} - hC_{i,t-1})^{1-\sigma} - 1}{1-\sigma} \text{ and } V_{i}(L_{i,t}^{\ell}) = \frac{L_{i,t}^{\ell-1+\varphi}}{1+\varphi},$$


Model v. Data


Differential response to a 10 p.p. transitory increase in trade costs for average country



10 p.p. increase in U.S. trade costs

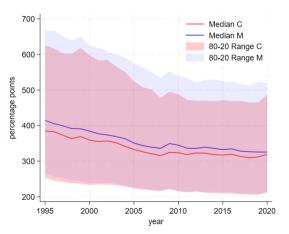
Higher τ^{M} increase real MC and lead to more prolonged stagflationary dynamics

Experiments

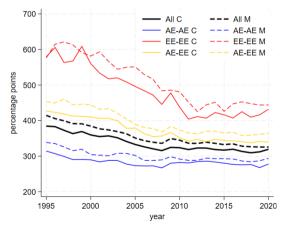
- ► Monetary policy rule options Results MP
 - * Consider rule targeting CPI vs PPI ("look-through" MP) inflation
 - * Intermediates undo advantages of PPI targeting.
- ► Macroeconomic effects of US-China 2018-19 trade war Results US-China TW
 - * Calibrate trade costs based on U.S.-China tariffs and measure of bilateral costs
 - * U.S. CPI \uparrow by more than 0.4%, tariffs on interm. explain bulk of π persistence and GDP \downarrow
- ► Trade costs and post-pandemic U.S. inflation Results Decomposition
 - * Estimation of model of U.S. vs Rest-of-World (ROW)
 - * Extend model to add quantitative realism: LCP, trade inertia, wage and price indexation
 - * Trade costs: prevented (i) deflation during COVID-19 and (ii) lower inflation in 2022-23.

Conclusion

- Increases in trade costs are inflationary.
 - Inflation dynamics depend on good type: Transitory for finished consumption goods, persistent for intermediate production inputs.
- Model replicates the empirical responses of macro variables to trade cost shocks.
 - Intermediates trade costs reduce production efficiency, raise domestic firms' marginal cost.
- Ongoing work (w/ Schott & Bodenstein): Optimal monetary policy response to tariffs.
 - Quantitative framework
 - Allow for inflation inertia (proxying for de-anchoring of π expectations).

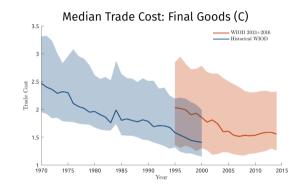

Conclusion

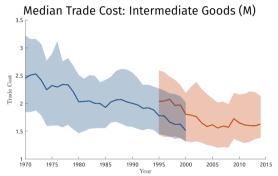
- Increases in trade costs are inflationary.
 - Inflation dynamics depend on good type: Transitory for finished consumption goods, persistent for intermediate production inputs.
- Model replicates the empirical responses of macro variables to trade cost shocks.
 - Intermediates trade costs reduce production efficiency, raise domestic firms' marginal cost.
- Ongoing work (w/ Schott & Bodenstein): Optimal monetary policy response to tariffs.
 - Quantitative framework.
 - Allow for inflation inertia (proxying for de-anchoring of π expectations).


Appendix

Trade Costs Across Time and Space

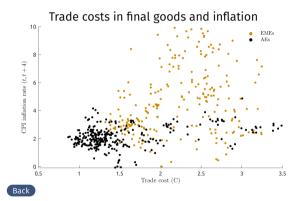
Evolution of distribution (all 41 countries)

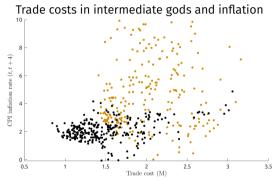



Evolution of medians by country group

Empirics

Historical Evolution of Global Trade Costs


Note: Shaded areas are bounded by the 20th and 80th percentiles.


Back

Note: Shaded areas are bounded by the 20th and 80th percentiles.

Empirics: Trade Costs and inflation

Import Costs and Inflation in the Data

Model: Risk Premium

Maximization by household ℓ is subject to

$$\sum_{h=1}^{N} \underbrace{\tau_{ih,t}^{C} P_{ih,t}}_{P_{ih,t}^{C}} C_{ih,t} + B_{ii,t} + \underbrace{\frac{B_{1i,t}}{\mathcal{E}_{1i,t}}}_{\mathcal{E}_{1i,t}} \leq W_{i,t}^{\ell} L_{i,t}^{\ell} + R_{i,t-1} B_{ii,t-1} + R_{1,t-1} \Psi_{i,t-1} \frac{B_{i1,t-1}}{\mathcal{E}_{1i,t}} + T_{i,t},$$

where $P_{ih,t} = \mathcal{E}_{ih,t} P_{h,t}$ and

- * B_{ih t}: holdings of country h's bond,
- * $\mathcal{E}_{ih,t}$: country i's nominal exchange rate v. country h (country 1 is the U.S.), * $P_{h,t}$: price in LCUs at which good produced in h is sold in h,
- * $t_{iht}^C = d_{iht}^C (1 + t_{iht}^C)$: exogenous trade cost (iceberg cost + add-valorem tariff),
- * $\Psi_{i,t-1}$: currency risk premium (for i=2,...,N) such that

$$\Psi_{i,t} = (1 - \psi \frac{b_{i1,t}}{\mathbb{Q}_{1i,t} Y_{i,t}}) \varepsilon_{i,t}^{\psi}$$

where $b_{i_1,t} \equiv \frac{B_{i_1,t}}{P_{i_1}^C}$, $\mathbb{Q}_{1i,t} \equiv \frac{\mathcal{E}_{1i,t}P_{i,t}}{P_{1,t}}$, and $\varepsilon_{i,t}^{\psi}$ is AR(1).

Model

Wage setting

- o A labor union in each i aggregates labor varieties according to $L_{i,t} = \left(\int_0^1 L_{i,t}^{\ell} \frac{\epsilon_W 1}{\epsilon_W} d\ell\right)^{\frac{-w}{\epsilon_W 1}}$.
- o Demand for labor variety *l*

$$L_{i,t}^{\ell} = \left(\frac{W_{i,t}^{\ell}}{W_{i,t}}\right)^{-\epsilon_{w}} L_{i,t},$$

where

$$W_{i,t} = \left(\int_{0}^{1} W_{i,t}^{\ell}^{1-\epsilon_{w}} d\ell\right)^{\frac{1}{1-\epsilon_{w}}}$$

o Household ℓ can reset the nominal wage $W_{i,t}^{\ell}$ only with prob. $1-\theta_w$, and with prob. θ_w must set the previous-period nominal wage $W_{i,t-1}^{\ell}$.

Monetary policy and market clearing

o Central bank in each country follows inertial Taylor rule:

$$R_{i,t} = \left(R_{i,t-1}\right)^{\phi_r} \left(\frac{1}{\beta} \left(\pi_{j,t}\right)^{\phi_\pi} \left(\frac{GDP_{i,t}}{GDP_{i,t}^*}\right)^{\phi_y}\right)^{1-\phi_r}.$$

- * $\pi_{i,t}$ is CPI inflation and $GDP_{i,t}^*$ is the flex-price level of GDP
- * Details of the policy rule are crucial for transmission into real activity and prices
- o Market clearing: For i = 1, ...N,

$$\xi_{i}Y_{i,t} = \sum_{h=1}^{N} \xi_{h}(d_{hi,t}^{c}C_{hi,t} + d_{hi,t}^{M}M_{hi,t}),$$

where ξ_i is country i's population (all variables are in per-capita terms).

o Standard definition of equilibrium with balanced government budget and balanced trade

Monetary policy and market clearing

o Central bank in each country follows inertial Taylor rule:

$$R_{i,t} = \left(R_{i,t-1}\right)^{\phi_r} \left(\frac{1}{\beta} \left(\pi_{j,t}\right)^{\phi_\pi} \left(\frac{GDP_{i,t}}{GDP_{i,t}^*}\right)^{\phi_y}\right)^{1-\phi_r}.$$

- * $\pi_{i,t}$ is CPI inflation and $GDP_{i,t}^*$ is the flex-price level of GDP
- * Details of the policy rule are crucial for transmission into real activity and prices
- o Market clearing: For i = 1, ...N,

$$\xi_{i}Y_{i,t} = \sum_{h=1}^{N} \xi_{h}(d_{hi,t}^{C}C_{hi,t} + d_{hi,t}^{M}M_{hi,t}),$$

where ξ_i is country i's population (all variables are in per-capita terms).

o Standard definition of equilibrium with balanced government budget and balanced trade

Monetary policy and market clearing

o Central bank in each country follows inertial Taylor rule:

$$R_{i,t} = \left(R_{i,t-1}\right)^{\phi_r} \left(\frac{1}{\beta} \left(\pi_{j,t}\right)^{\phi_\pi} \left(\frac{GDP_{i,t}}{GDP_{i,t}^*}\right)^{\phi_y}\right)^{1-\phi_r}.$$

- * $\pi_{i,t}$ is CPI inflation and $GDP_{i,t}^*$ is the flex-price level of GDP
- * Details of the policy rule are crucial for transmission into real activity and prices
- o Market clearing: For i = 1, ...N,

$$\xi_{i}Y_{i,t} = \sum_{h=1}^{N} \xi_{h}(d_{hi,t}^{C}C_{hi,t} + d_{hi,t}^{M}M_{hi,t}),$$

where ξ_i is country i's population (all variables are in per-capita terms).

o Standard definition of equilibrium with balanced government budget and balanced trade

Calibration: Macro Parameters

Parameter	Description	Value
β	Discount factor	0.99
σ	Inverse IES	0.5
h	Habit	0.75
η	Trade substitution elasticity consumption	5
η_m	Trade substitution elasticity intermediates	5
$\boldsymbol{\varphi}$	Inverse labor supply elasticity	2
ϵ	Home varieties' substitution elasticity	6
ϵ_{w}	Labor varieties' substitution elasticity	6
θ, θ_{w}	Price, wage rigidity	0.80
ν	Intermediates weight in production	0.4
$oldsymbol{arepsilon}_y$	Intermediates-labor substitution elasticity	0.5
ϕ_{π}	Taylor rule inflation coefficient	1.5
ϕ_y	Taylor rule output coefficient	0.2
ϕ_r	Taylor rule inertia	0.75
ψ	Risk premium elasticity to NFA	0.001

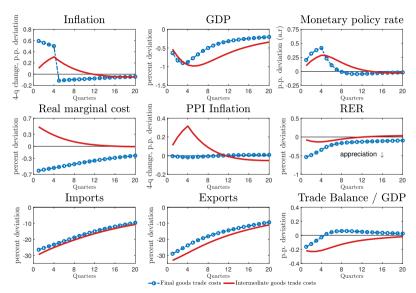
Calibration: Trade Parameters

Parameter	Description	Value
$\rho_{ au}$	Trade cost shock autocorrelation	0.95
[U.S., China, Asia, AE, ROW]	Region size	[.20,.19,.19,.27,.14]

Consumption Expenditure Shares

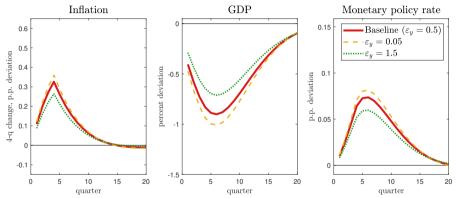
Source

	U.S.	China	Asia	AE
U.S.	0.94	0.012	0.004	0.021
China		0.95	0.009	0.02
Asia			0.94	0.014
AE				0.94

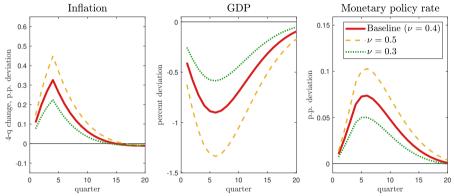

Intermediate Expenditure Shares

Source

	U.S.	China	Asia	AE
U.S.	0.88	0.025	0.007	0.04
China		0.94	0.01	0.014
Asia			0.81	0.045
AE				0.89


10 p.p. increase in U.S. trade costs

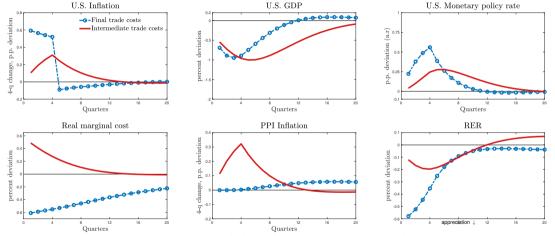
Model Experiments



Note: Effects of a 10 percentage point increase in the U.S.'s trade costs from all trading partners on intermediate inputs, baseline calibration with intermediates-labor substitution elasticity $\varepsilon_{\rm V}=$ 0.5 (red solid), $\varepsilon_{\rm V}=$ 0.05 (yellow dashed), and $\varepsilon_{\rm V}=$ 1.5 (green dotted).

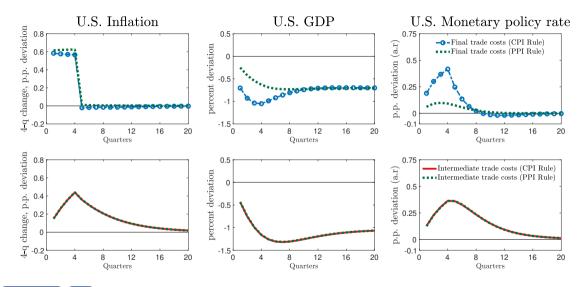
Model Experiments

Effects on the U.S. of an increase in intermediates trade costs, role of ν

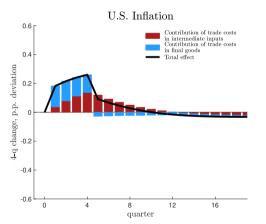


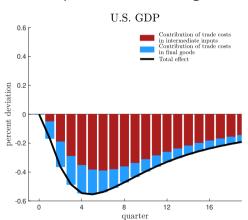
Note: Effects of a 10 percentage point increase in the U.S.'s trade costs from all trading partners on intermediate inputs, baseline calibration with share of intermediates in production $\nu = 0.4$ (red solid), $\nu = 0.5$ (yellow dashed), and $\nu_{\nu} = 0.3$ (green dotted).

Model Experiments: 10 p.p. transitory increase in trade costs

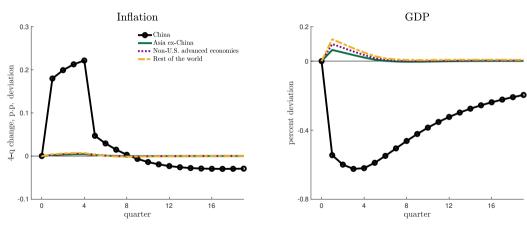

Impulse responses

Note: Effects of a 10 percentage point increase in the U.S.'s trade costs from all trading partners.




Monetary Policy: CPI v. PPI Rule (permanent trade shock)

2018-19 U.S.-China trade tensions, effects on U.S.


- o Calibrate trade costs based on tariffs imposed by the U.S. and China's response
- o Increase in average bilateral tariff in line with measured bilateral trade costs
- o Tariffs on interm. inputs explain the bulk of inflation persistence and drag on GDP

2018-19 U.S.-China trade tensions, effects on other regions

- o Muted inflationary effects in foreign regions outside China
- o Unaffected regions benefited modestly from trade diversion

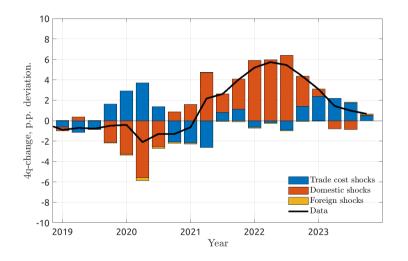
Estimation of model of U.S. vs Rest-of-World (ROW)

Extend model to add quantitative realism: LCP, trade inertia, wage and price indexation

Two-step approach:

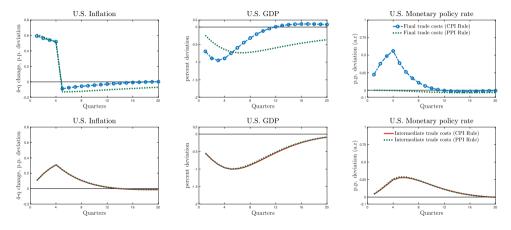
- Estimate model with data from 1999:Q1 2019:Q4
- Filter shocks from 2020:Q1-2023:Q4

Standard macro data and shocks


- ▶ U.S.: GDP growth, CPI inflation, nominal interest rate
- ▶ ROW: GDP growth, CPI inflation, nominal interest rate, U.S./ROW real exchange rate
- ► Shocks: TFP (\times 2), Demand (\times 2), Monetary Policy (\times 2), UIP.

Trade data and trade shocks

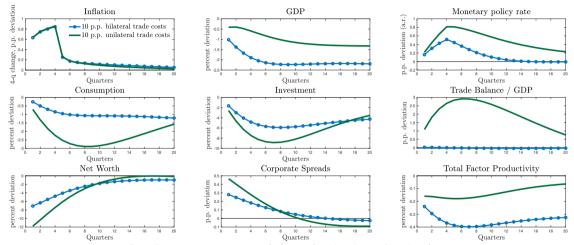
- New data: quarterly domestic sourcing shares for final and intermediate goods
- **New shocks:** trade costs for final $(\tau_{\mathit{US},\mathit{ROW}}^{\mathit{C}})$ and intermediate goods $(\tau_{\mathit{US},\mathit{ROW}}^{\mathit{M}})$


Significant Effect of Trade Costs During the Pandemic Inflation

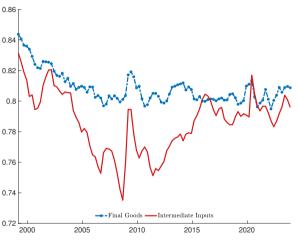
Back

Monetary Policy Response

Transitory Tariffs

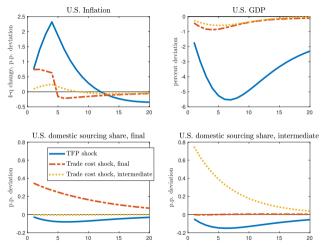


Note: Effects of a 10 percentage point increase in the U.S.'s trade costs from all trading partners.


Extensions

Trade adjustment costs, capital utilization, investment (domestic and imported), LCP, financial frictions

Note: Effects of a permanent 10 percentage point increase in U.S.'s trade costs from all trading partners.


U.S. Quarterly Domestic Sourcing Shares

Notes: U.S. sourcing shares interpolated from BEA inpunt-output tables. The blue line corresponds to the domestic sourcing share of final goods. The red line depicts the domestic sourcing share for intermediate inputs. Sourcing shares correspond to tradable sectors in accordance to standard NAICS classification.

Identification of Trade Cost Shocks

Notes: Impulse response to a one standard deviation to total factor productivity shock (blue), trade cost shock for final goods (red), trade cost shock for intermediate inputs (vellow). Model calibrated at the estimated posterior mean parameters.

