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Abstract

This paper proposes a regularisation method for the estimation of large covariance
matrices that uses insights from the multiple testing (MT') literature. The approach
tests the statistical significance of individual pair-wise correlations and sets to zero
those elements that are not statistically significant, taking account of the multiple
testing nature of the problem. The effective p-values of the tests are set as a decreasing
function of N (the cross section dimension), the rate of which is governed by the nature
of dependence of the underlying observations, and the relative expansion rates of NV
and T (the time dimension). In this respect, the method specifies the appropriate
thresholding parameter to be used under Gaussian and non-Gaussian settings. The
MT estimator of the sample correlation matrix is shown to be consistent in the spectral
and Frobenius norms, and in terms of support recovery, so long as the true covariance
matrix is sparse. The performance of the proposed M1 estimator is compared to a
number of other estimators in the literature using Monte Carlo experiments. It is shown
that the MT estimator performs well and tends to outperform the other estimators,
particularly when N is larger than 7.
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1 Introduction

Improved estimation of covariance matrices is a problem that features prominently in a
number of areas of multivariate statistical analysis. In finance it arises in portfolio selection
and optimisation (Ledoit and Wolf (2003)), risk management (Fan et al. (2008)) and testing
of capital asset pricing models (Sentana (2009)). In global macroeconometric modelling
with many domestic and foreign channels of interactions, error covariance matrices must
be estimated for impulse response analysis and bootstrapping (Pesaran et al. (2004); Dees
et al. (2007)). In the area of bioinformatics, covariance matrices are required when inferring
gene association networks (Carroll (2003); Schéfer and Strimmer (2005)). Such matrices are
further encountered in fields including meteorology, climate research, spectroscopy, signal
processing and pattern recognition.

Importantly, the issue of consistently estimating the population covariance matrix, 3 =
(0i;), becomes particularly challenging when the number of variables, N, is larger than the
number of observations, T'. In this case, one way of obtaining a suitable estimator for X%
is to appropriately restrict the off-diagonal elements of its sample estimate denoted by 3.
Numerous methods have been developed to address this challenge, predominantly in the
statistics literature. See Pourahmadi (2011) for an extensive review and references therein.
Some approaches are regression-based and make use of suitable decompositions of 3 such as
the Cholesky decomposition (see Pourahmadi (1999), Pourahmadi (2000), Rothman et al.
(2010), Abadir et al. (2014), among others). Others include banding or tapering methods as
proposed, for example, by Bickel and Levina (2004), Bickel and Levina (2008b) and Wu and
Pourahmadi (2009), which assume that the variables under consideration follow a natural
ordering. Two popular regularisation techniques in the literature that do not make use of
any ordering assumptions are those of thresholding and shrinkage.

Thresholding involves setting off-diagonal elements of the sample covariance matrix that
are in absolute terms below certain threshold values to zero. This approach includes ‘uni-
versal’ thresholding put forward by El Karoui (2008) and Bickel and Levina (2008a), and
‘adaptive’ thresholding proposed by Cai and Liu (2011). Universal thresholding applies the
same thresholding parameter to all off-diagonal elements of the unconstrained sample co-
variance matrix, while adaptive thresholding allows the threshold value to vary across the
different off-diagonal elements of the matrix. Furthermore, the selected non-zero elements
of 3 can either be set to their sample estimates or can be adjusted downward. This relates
to the concepts of ‘hard’ and ‘soft’ thresholding, respectively. The thresholding approach
traditionally assumes that the underlying (population) covariance matrix is sparse, where
sparsity is loosely defined as the presence of a sufficient number of zeros on each row of X
such that it is absolute summable row (column)-wise, or more generally in the sense defined
by El Karoui (2008). However, Fan et al. (2011) and Fan et al. (2013) show that such reg-
ularisation techniques can be applied even if the underlying population covariance matrix
is not sparse, so long as the non-sparsity is characterised by an approximate factor struc-
ture. The main challenge in applying this approach lies in the estimation of the thresholding
parameter, which is primarily calibrated by cross-validation.



In contrast to thresholding, the shrinkage approach reduces all sample estimates of the
covariance matrix towards zero element-wise. More formally, the shrinkage estimator of X is
defined as a weighted average of the sample covariance matrix and an invertible covariance
matrix estimator known as the shrinkage target - see Friedman (1989). A number of shrinkage
targets have been considered in the literature that take advantage of a priori knowledge of
the data characteristics under investigation. Examples of covariance matrix targets can be
found in Ledoit and Wolf (2003), Daniels and Kass (1999), Daniels and Kass (2001), Fan
et al. (2008), and Hoff (2009), among others. Ledoit and Wolf (2004) suggest a modified
shrinkage estimator that involves a linear combination of the unrestricted sample covariance
matrix with the identity matrix. This is recommended by the authors for more general
situations where no natural shrinking target exists. On the whole, shrinkage estimators tend
to be stable, but yield inconsistent estimates if the purpose of the analysis is the estimation
of the true and false positive rates of the underlying true sparse covariance matrix (the so
called ‘support recovery’ problem).

This paper considers an alternative approach using a multiple testing (MT) procedure
to set the thresholding parameter. A similar idea has been suggested by El Karoui (2008) -
p. 2748, who considers testing the N(N — 1)/2 null hypotheses that o;; = 0, for all i # j,
jointly. But no formal theory has been developed in the literature for this purpose. In our
application of this idea we focus on testing the significance of the correlation coefficients,
pij = Oij/ aili/ 20;]/-2 for all ¢ # j, which avoids the scaling problem associated with the use of
0;j, and allows us to obtain a universal threshold for all ¢ and j pairs. We use ideas from the
multiple testing literature to control the rate at which the spectral and Frobenius norms of
the difference between the true correlation matrix R = (p;;), and our proposed estimator of
it, Rz = (Pijr), tends to zero, and will not be particularly concerned with controlling the
overall size of the joint N(N — 1)/2 tests of p;; = 0, for all i # j.

We establish that flMT converges to R in spectral norm at the rate of O, (—mN (N )),

T
where my is the maximum number of non-zero elements in the off-diagonal rowgﬁof R,
p(N) = @71 (1 —5&5), @7 (.) is the inverse of the cumulative distribution of a standard
normal variate, p is the nominal size of the test, and the choice of § > 0 is related to
the degree of non-Gaussianity of the underlying observations. This is equivalent to the

corresponding O, (mN @) rate established for the threshold estimator of 3 in the

literature, considering that ¢2(NV)/In(N) — 26 as N — oo. The main difference between the
two approaches is that we use a multiple testing critical value to set the threshold, whilst
the literature uses cross validation. It is perhaps also worth noting that our results are
established under weaker moment conditions than sub-Gaussianity typically assumed in the
literature while comparable to the polynomial-type tail conditions considered in Bickel and
Levina (2008a) or Cai and Liu (2011).

In terms of the Frobenius norm, we show that the M7 estimator converges at the rate

of O, ( %N), for suitable choices of the critical value function in our MT procedure.

This result holds even if the underlying observations are non-Gaussian. To the best of



our knowledge, the only work that addresses the theoretical properties of the thresholding
estimator for the Frobenius norm is Bickel and Levina (2008a), who establish the slower

mpy N In(N
T

rate of O, )). We also establish conditions under which our proposed estimator

consistently recovers the support of the population covariance matrix under Gaussian and
non-Gaussian observations, and show that the true positive rate tends to one with probability
1, and the false positive rate and the false discovery rate tend to zero with probability 1,
even if NV tends to infinity faster than 7. We provide conditions under which these results
hold.

The performance of the MT estimator is investigated using a Monte Carlo simulation
study, and its properties are compared to a number of extant regularised estimators in
the literature. The simulation results show that the proposed multiple testing estimator is
robust to the typical choices of p used in the literature (10%, 5% and 1%), and performs
favourably compared to the other estimators, especially when N is large relative to T'. The
MT procedure also dominates other regularised estimators when the focus of the analysis is
on support recovery.

The rest of the paper is organised as follows: Section 2 outlines some preliminaries,
introduces the MT procedure and derives its asymptotic properties. The small sample
properties of the MT estimator are investigated in Section 3. Concluding remarks are
provided in Section 4. Some of the technical proofs and additional material are provided in
an online supplement.

Notations

O (.) and o(.) denote the Big O and Little o notations, respectively. If {fn}x_; is any
real sequence and {gn}y_, is a sequence of positive real numbers, then fy = O(gn) if
there exists a positive finite constant K such that |fy| /gy < K for all N. fy = o(gy) if
In/gn — 0 as N — oo. Op(.) and o0,(.) are the equivalent orders in probability. If { fx}3_;
and {gn}y_; are both positive sequences of real numbers, then fy = & (gy) if there exists
Ny > 1 and positive finite constants Ky and K, such that infysn, (fv/gn) > Ko, and
supysn, (fn/gn) < Ki. The largest and the smallest eigenvalues of the N X N real symmetric
matrix A = (a;;) are denoted by Amax (A) and Amin (A), respectively, its trace by tr (A) =

SNV @i, its maximum absolute column sum norm by [|A||;, = max;<j<y <ZZ]11 |aij|>, its

maximum absolute row sum norm by ||A||, = max;<;<y (Z;V:1 |aij|>, its spectral radius

by 0(A) = |Amax (A)], its spectral (or operator) norm by ||A| = A2 (A’A), its Frobenius
norm by ||Al||, = \/tr (A’A). “% denotes almost sure convergence, and > convergence in
probability. K, Ky, K1, C, s, cs, cq, €0, €, and n are finite positive constants, independent of
N and T'. sup;; will be used to denote sup; ;< y 1<;<7- All asymptotics are carried out under

N and T — o0, jointly. -



2 Regularising the sample correlation matrix: A mul-
tiple testing (MT) approach

Let {zy, 1€ N, teT}, N C N, T C Z, be a double index process where x; is de-
fined on a suitable probability space (2, F, P), and denote the covariance matrix of x;, =
(T14, Tot, ..., Te) by

Var (2)) = 2 = B (@ - 1) (& - )] 1)
where F(x;) = p = (iq, flg, - - -, i)', and X is an N x N symmetric, positive definite real
matrix with (4, j) element, o;;. We assume that x;; is independent over time, t. We consider

the regularisation of the sample covariance matrix estimator of ¥, denoted by f), with
elements

T
é-ij,T = T_l Z (xit — (Z’Z) ((L’jt — Zf’j) > fOI' Z,j = 17 2, Ce ,N, (2)

t=1
where 7; = T! Z:{:l x;. To this end we assume that X is (exactly) sparse defined as follows:

Assumption 1 The population covariance matriz, 3 = (0;;), where Apin (X) > €9 > 0, is
sparse in the sense that my defined by

my = max » I (0i; #0), (3)

s O (Nﬁ) for some 0 <9 < 1/2, where I(A) is an indicator function that takes the value of
1 if A holds and zero otherwise.

A comprehensive discussion of the concept of sparsity applied to ¥ and alternative ways
of defining it are provided in El Karoui (2008) and Bickel and Levina (2008a).

Remark 1 The concept of sparsity defined by (3) is particularly suited to economic applica-
tions where the focus of the analysis is often on connections in a given network, or support
recovery of 3.1 But our analysis can be readily extended to allow for approximate sparsity
entertained in the literature, with (3) replaced by

N

_ 14

mgn = max 3oyl
j=1

for0 < g <1, and myny = O (N’?), with 0 <9 < 1/2. To simplify the exposition we focus

on the concept of exact sparsity as defined by Assumption 1.

We follow the hard thresholding literature but, as noted above, we employ multiple
testing to decide on the threshold value. More specifically, we set to zero those elements of
R = (p;;) that are statistically insignificant and therefore determine the threshold value as

LA similar argument is also made in Fan et al. (2011).
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part of a multiple testing strategy. We apply the thresholding procedure explicitly to the
correlations rather than the covariances. This has the added advantage that one can use
a so-called ‘universal’ threshold rather than making entry-dependent adjustments, which in
turn need to be estimated when thresholding is applied to covariances. This feature is in line
with the method of Bickel and Levina (2008a) or El Karoui (2008) but shares the properties
of the adaptive thresholding estimator developed by Cai and Liu (2011).

Specifically, denote the sample correlation of z; and xj, computed over t = 1,2,...,T,

by

Diir = Disp = _ Our (4)
i, T = Pji,T m,

where ;1 is defined by (2). For a given i and j, it is well known that under Hy;; : 0;; = 0,
\/T[)ijj is asymptotically distributed as N (0, 1) for T sufficiently large. This suggests using
T=1/2¢=1 (1 - £) as the threshold for |p;; |, where ®* () is the inverse of the cumulative
distribution of a standard normal variate, and p is the chosen nominal size of the test,
typically taken to be 1% or 5%. However, since there are in fact N (N — 1) /2 such tests and
N is large, then using the threshold 772! (1 — Z) for all N(N —1)/2 pairs of correlation
coefficients will yield inconsistent estimates of 3 and fail to recover its support.

A popular approach to the multiple testing problem is to control the overall size of
the n = N(N — 1)/2 tests jointly (known as family-wise error rate) rather than the size
of the individual tests. Let the family of null hypotheses of interest be Hy, Hoo, . .., Hop,
and suppose we are provided with the corresponding test statistics, Zir, Zor, . .., Znr, With
separate rejection rules given by (using a two-sided alternative)

Pr (|Zir| > CVir |Hoi ) < pir,

where C'V;7 is some suitably chosen critical value of the test, and p;r is the observed p-value
for Hy;. Consider now the family-wise error rate (FWER) defined by

FWERT = Pl"[ ?:1 (|ZzT’ > OV;T |H01)] ,

and suppose that we wish to control F'W E Ry to lie below a pre-determined value, p. One
could also consider other generalized error rates (see for example Abramovich et al. (2006)
or Romano et al. (2008)). Bonferroni (1935) provides a general solution, which holds for all
possible degrees of dependence across the separate tests. Using the union bound, we have

Pr(UL, (|Zir| > CVir |Hy)] < ZPr(IZm > CVip | Hy;)

i1
n

< ZpiT-
i=1

Hence to achieve FW ERr < p, it is sufficient to set p;r < p/n. Alternative multiple testing
procedures advanced in the literature that are less conservative than the Bonferroni procedure
can also be employed. One prominent example is the step-down procedure proposed by Holm
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(1979) that, similar to the Bonferroni approach, does not impose any further restrictions on
the degree to which the underlying tests depend on each other. More recently, Romano and
Wolf (2005) proposed step-down methods that reduce the multiple testing procedure to the
problem of sequentially constructing critical values for single tests. Such extensions can be
readily considered but will not be pursued here.

In our application we scale p by a general function of N, which we denote by f(N) = csN?,
where ¢; and § are finite positive constants, and then derive conditions on § which ensure
consistent support recovery and a suitable convergence rate of the error in estimation of
R = (p;;). In particular, we show that the choice of § depends on the nature of dependence
of the pairs (y;,yj:), for all i # j, and on the relative rate at which N and T rise. As will
be shown in Section 2.1, the degree of dependence is defined by K, = sup,; K,(6;;) where
0,; is a vector of cumulants of (yi, y;:). When p,; = 0 for all 7 and j, i # j, this parameter
is given by ¢, = sup;; ((pij) where ¢,; = F (yiy?t | Pij = 0) > 0. In the case where y;; and
y;+ are independent under the null, then ¢, = 1.

Specifically, the multiple testing (MT') estimator of R, denoted by Ry = (ﬁmT) , is
given by

Piir = Pirl [|pir| > T ?e(N)], i=1,2,...,N—1, j=i+1,...,N, (5)

where

with f(N) = ¢;N°, c5,6 > 0. The corresponding MT estimator of X is given by

~ A 1/2 ~ A 1/2
Sur=D""RyrD"", (7)
where D = diag(611,7,02,1,...,0NNr). The MT procedure can also be applied to de-

factored observations following the de-factoring approach of Fan et al. (2011) and Fan et al.
(2013).

2.1 Theoretical properties of the MT estimator

To investigate the asymptotic properties of the MT estimator defined by (5) we make the
following assumption on the bivariate distribution of x;; and xj, for any ¢ # j, and t =
1,2,...,T.

Assumption 2 Let y;; = (vi — p;)/\/0i with mean p, = E(xy), 1| < K, variance o;; =
Var(ry), 0 < 0i < K, and correlation coefficient p;; = 045/./0:0;, where oi; = E(yiyjt),
and |pij{ < 1. Suppose that supl-7tE|y,~t|28 < K for some positive integer s > 3, and let
t =
1,2,...,T, are random draws from a common distribution which is absolutely continuous

€ijr = (yit,yjt,yft,yjzt,yityjt)’ such that for any i # j the time series observations §;;,,

with non-zero density on subsets of R?.2

2The restrictions on the common distribution imply that Cramér’s condition holds. See p.45 of Hall
(1992) for further details.



We begin our theoretical derivations with the following proposition.

Proposition 1 Let y;; = (i — 11;)/\/04, and suppose that Assumption 2 holds. Consider
the sample correlation coefficient given by (4), and note that

ZtT=1 (yir — i) (Yt — Uy)

f)ij,T = 1/2 12" (8)
[Zthl (yir — ?i)Z] [Zthl (yjt — %)2}
Then
A Km 01 —
pijr = E (pij,T) = piy; t 1(1 ) + O (T 2) ) (9)
~ Kv 0@ _
Wi = Var (byr) = % +0(T77), (10)

uniformly in the i and j (i # j) pairs, where®

1 3 1 1
K (0i5) = —5%(1 — i)+ 3P [ri5(4,0) + ki5(0,4)] — 3 ki (3,1) + Ki5(1,3)] + Zﬂij"vz‘j(l 2),
(11)
1 1
K,(05) = (1—p},)* + le?j [1ij(4,0) + Ki5(0,4)] = p;; [145(3, 1) + £45(1,3)] + 5(2 + 5 )k (2, 2),
(12)

Kij<47 0) - E(:y;lt) - 37 Kij<07 4) = E(y;lt) - 37
kii(3,1) = E(yhyi) — 3py, kii(1,3) = E(yayl,) — 3py,
kij(2,2) = E(yiys) — 205 — 1,

and 0;; = (p;;, Kij(0,4)+ki(4,0), ki (3, 1) +ki5(1,3), k45(2,2))". Furthermore, sup;; | K,,(055)| <
K and sup;; K 2(0:5) < K. Under the additional assumption that y; are Gaussian the above
expressions simplify to K,,(0:;) = —3p,;(1—p3;) and K,(8;;) = (1—pZ;)?, and it follows that
sup,; K,(0i5) = 1.

All proofs are given in the Appendix with supporting Lemmas and technical details
provided in an online supplement.

Remark 2 From Gayen (1951) p.232 (eq (54)bis) it follows that K,(0;;) > 0 for all corre-
lation coefficients p;; = 0ij/\/50jj, such that |pij| < 1. Further, in the case where p;; =0,
by (12),

0 = K,(0i|p; =0) =E (Vv |pi; =0) >0, (13)
and by (11),

1/11‘]‘ = Km(eij {pij =0)=-05 [E (y?tyjt }pij = 0) +F (yity]:)‘)t ‘pij = O)] . (14)

Note in addition that when y;; and y;; are independently distributed, then p;; = E AN (y]zt) =
1, and v¢;; = 0. This is also the case when y;; are Gaussian.

3See also equations (38) and (39) of Gayen (1951).
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The next proposition assists in establishing probability bounds on p,; 7.

Proposition 2 Consider the standardised correlation coefficient
Zig, T = (ﬁz‘j,T - pz‘j,T) JwizT, (15)

where p;;r is defined by (4), pijr and w3 are defined by (9) and (10), respectively, and
suppose that Assumptions 1 and 2 hold, and for all i and j (i # j) supy; E (|zi57]°) < K,
for some finite integer s > 3. Then the cumulative distribution function of z;;r, denoted by
Fijr(z) = Pr(zijr < x), has the following Edgeworth expansion

Pr(zjr < ) —|—ZT "2g, (x) p(x) + O [T~/ (16)

uniformly in x € R, where ®(x) and ¢ (x) are the distribution and density functions of
the standard Normal (0,1), respectively, and g, (x), for r = 1,2,...,s — 2, are finite-order
polynomials in x of degree 3r — 1 whose coefficients do not depend on x. Furthermore, for
all finite s > 3, and ar > 0, we have

Pr(zjr < —ar) < Ke 2% + 0O (Tﬁ(%z)a;(s_m_leié > +0 [ - 1)/2] g (17)
and ()
5—2

Pr(zijr > ar) < Ke” 297 4+ O (T_ S(S g _%QT> +0 [ - 1)/2] (18)

Remark 3 This proposition establishes a bound on the probability of |ﬁij7T — pij‘ > T~1/2¢,(N)
without requiring sub-Gaussianity, at the expense of the additional order term, O [T_(S_l)/ 2},
which relates the bound to the order of the moments of zjr.

Using the probability bounds (17) and (18) we first establish the rate of convergence of
the MT estimator under the spectral norm which implies convergence in eigenvalues and
eigenvectors (see El Karoui (2008), and Bickel and Levina (2008Db)).

Theorem 1 (Convergence under spectral norm) Consider the sample correlation coefficient
of vy and xj, defined by p;;r (see (4)), and denote the associated population correlation
matrix by R = (pij). Let T = c¢yN?, with c; > 0, and suppose that Assumptions 1 and 2

hold. Further, let
cp(N) = @ (1—L),

where 0 < p < 1, f(N) = ¢sN°, with cs5,8 > 0. Suppose also that there exist Ny such that

for all N > Np, »

~2f(N)
Penin > ep(N)/VT, (20)

> 0, (19)



where P, = ming(|py;

,pi; 7 0), and
¢o(N)/VT = o(1). (21)

Consider values of ¢ that satisfy condition

(22)

for some small positive constant ~y, where K, = sup,; K,(0;;) and K,(0;;) is defined by (12).
Then for all values of d > 4/ (s — 1), where s is defined by Assumption 2, we have

M) , (23)

VT

where my is defined by (3),and the multiple testing threshold estimator, ﬁMT, is defined by
Ryt = (fbij,T); where p;; p = Pyl szyT| > T_l/Qcp(N)} )

|0

Remark 4 The term c,(N) in (23) directly corresponds to the term +/In(N) obtained in
mpy+/In(N)

the literature for the probability order, O, (T), of the spectral norm of threshold
estimators of R. This result follows since limy_ ¢2(N)/In(N) = 26, for § > 0.*

Remark 5 The parameter d, which controls the rate at which T rises with N, is required
to be sufficiently large such that d > 4/(s — 1), and T~Y?¢c,(N) = o(1) hold. But from
result (a) of Lemma 2 in the online supplement, we have N~%%c,(N) = O (W),
and condition T~/%c,(N) = o(1) will be met if N~¢In(N) = o(1). Further, recall that the
validity of the Edgeworth expansion that underlies our analysis requires s to be finite, and

hence condition d > 0 will follow from the moment condition d > 4/(s — 1), for s > 3
required by Assumption 2.

Remark 6 Condition (19) is met for § > 0 and N sufficiently large. Condition (20) can be

written as ) ) )
2 Cp(N) _ Cp(N) — 1 Cp(N) In(N)
Puin = =p ™ T Nd T 4 | In(NY | | TNE |
Once again since limy_o ¢2(N)/In(N) = 20, then condition (20) will be satisfied for any
0 > 0, even if p, tends to zero with N, so long as the rate at which p,;, tends to zero is

slower than +/In(N)/N4.

Remark 7 Note that under Gaussianity where K, = sup;; K,(0;;) = 1, condition (22)
becomes o > 2. In general, the spectral norm resull requires § to be set above 2sup;; K,(0:),

which turns out to be larger than the value of § required for the Frobenius norm obtained in
the theorem below.

4See part (b) of Lemma 2 in the online supplement.



Theorem 2 (Convergence under Frobenius norm) Suppose that conditions of Theorem 1
hold, but (22) is replaced by the weaker condition on §

6> (2 = d) Prmax; (24)

where . = supy; B (Y3173, pij =0) >0, yi = (wa — ;) //Tii (see Assumption 2), § and d
are the exponents in f(N) = csN°, and T = c4N?, with c5,cq > 0. Then for all values of

2+9 4
s—1"s+1)’

d > max ( (25)

where s is defined by Assumption 2, and 9 (0 < ¢ < 1/2) is the degree of sparsity of the
correlation matriz, R, defined by condition (3) in Assumption 1, we have

bl ], ~o (55). 2
and
[ =5, =0 (/%55 e

where my = O(N ’9), and the multiple testing threshold estimator, ﬁMT, is defined by ﬁMT =
(pij,T)7 where ﬁz‘j,T = pij,T[ Hﬁng| > T_l/%p(N)}-

Remark 8 For the Frobenius norm result to hold condition (24) implies that & should be set
at a sufficiently high level, determined by d (the relative expansion rates of N and T'), and
Pmax (the mazimum degree of dependence between y;; and y;; when p;; = 0). The Frobenius
norm result holds even if N rises faster than T, so long as c,(N)/v/T = o(1) and a sufficient
number of moments exists such that condition (25) is met. In the case where N and T are
of the same order of magnitude (namely, d = 1), and where y; and y;; are independently
distributed when p;; = 0 (namely, = 1), then the Frobenius norm results, (26) and (27),
require 0 > 1.

Spmax

Remark 9 The number of moments, s, of y; required for the convergence results (23), (26)
or (27) to hold is related to the relative rate of expansion of N and T, d. Ford=1, s =15
moments of p,; (which requires x;; to have 10 moments) are sufficient to achieve the spectral
or Frobenius norm results. Additional moments are required if N is to rise faster than T.

Remark 10 The convergence rate of O, (1 / %) obtained for the MT estimator under the

my N In(N)
T

for the threshold estimator. See, for example, Theorem 2 of Bickel and Levina (2008a), BL.
The slower rate of convergence achieved by BL under the Frobenius norm arises from the

Frobenius norm compares favourably to the corresponding rate of O, obtained

fact that their result s derived by explicitly using their spectral norm convergence rate. On
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the other hand, we consider the derivation of the Frobenius norm convergence rate directly
and independently of our spectral norm results. Furthermore, the sparsity condition of As-
sumption 1 sets an upper bound, my, on the number of non-zero units in the rows (columns)
of the population covariance matrix X, but it is silent as to the number of rows (columns)
of 3 with my non-zero elements. Whilst this ambiguity does not impact the convergence
rate obtained for the spectral norm, it does affect the Frobenius norm. In many economic
applications it might be known that only a finite number of rows of X, say k, have at most
mpy non-zero elements with the rest of the rows only containing a fized number of non-zero
elements, say mg, which is bounded in N. Under this notion of sparsity the convergence rate
of the Frobenius norm will be given by

HﬁMT—RHonp< MTN>+OP< —(N_Tk)mo),

which has a more favourable convergence rate as compared to (27).

Remark 11 [t is interesting to note that application of the Bonferroni procedure to the
problem of testing p;; = 0 for all i # j, is equivalent to setting f(N) = N(N — 1)/2.
Our theoretical results suggest that this can be too conservative if p;; = 0 implies y; and
Yt are independent, but could be appropriate otherwise depending on the relative rates at
which N and T rise. In our Monte Carlo study we consider § = {1,2}, that corresponds to

Pmax = 11, 1.5}

Consider now the issue of consistent support recovery of R (or X) for ' = T(N) = ¢;N?
and N — oo, which is defined in terms of the true positive rate (T'PRy), false positive rate
(FPRy), and false discovery rate (FDRy) statistics. Consistent support recovery requires
TPRy — 1, FPRy — 0 and FDRy — 0, with probability 1 (almost surely) as N — oo,
and does not follow immediately from the results obtained above on the convergence rates
of different estimators of R. This is addressed in the following theorem.

Theorem 3 (Support Recovery) Suppose that Assumptions 1 and 2 hold, and let

cp(N) = ! (1 - %) ,

where 0 < p < 1, f(N) = ¢sN°, with c5,6 > 0, and T = c4N¢, with c; > 0. Further, suppose
that there exist Ny such that for all N > Nj,

D
2f(N)

Panin > Cp(N)/VT, (28)
where p., = minij(‘pij‘ P 7 0), and

>0,

ep(N)/VT = o(1). (29)
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Consider the true positive rate (I PRy ), the false positive rate (FPRy ), and the false dis-
covery rate (F DRy ) statistics defined by

> 2 (P #0, and p;; # 0)

i)
TPRy = Z; T 20) (30)
Z;éz](ﬁij,T #0, and Pij = O)
FPRy = Z; 10y, =0) 7 (31)
Z;ézj(pij,'f # 0, and p; = 0)
B ) ¥ T¥ 2 R 32

computed using the multiple testing estimator
Pijr = Pijr! |:|pZ]T‘ > Tﬁl/ZCp(N)} ;
where p;;  is the pair-wise correlation coefficient defined by (4). Then as N — oo we have:

TPRy %31, for§>0, andd > 2/(s — 1)
FPRy %50, ford > ¢, andd >2/(s —1)
FDRy %20, ford > (2—9)¢,., andd>2(2—1)/(s—1)

where ¥ (0 < 9 < 1/2) is the degree of sparsity of the correlation matriz, R, defined by
condition (8) in Assumption 1, o, = sup,; E (yfty?t }pij =0) >0, withy; = (xi—p;)/\/Ti
(see Assumption 2). Further, as N — oo, TPRy — 1 and FPRy — 0 in probability for
d>0andd >0, and FDRy — 0 in probability if § > (1—10)@ax, andd > 2(1 —=1) /(s—1).

Remark 12 We note that
P

T - Cde ’
and hence condition T~/2c,(N) = o(1) will be met if N~4In(N) = o(1). Also, since under
Assumption 2 s > 3, it follows from the moment conditions on d that d > 0. For a discussion
of the remaining conditions on 6, d, and p,;, > T~Y?c,(N) > 0, see the above Remarks. In
general, the conditions needed for the support recovery results to hold when N is much larger
than T are less restrictive as compared to the conditions needed for the validity of the results

G(N) _ 2[(N) — In(p)

on the spectral and Frobenius norms.

3 Monte Carlo simulations

We investigate the numerical properties of the proposed multiple testing (MT) estimator
using Monte Carlo simulations. We compare our estimator with a number of thresholding and
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shrinkage estimators proposed in the literature, namely the thresholding estimators of Bickel
and Levina (2008a) - BL - and Cai and Liu (2011) - CL, and the shrinkage estimator of LW.
The thresholding methods of BL. and CL require the computation of a theoretical constant,
C, that arises in the rate of their convergence. For this purpose, cross-validation is typically
employed which we use when implementing these estimators. For the CL approach we also
consider the theoretical value of C' = 2 derived by the authors in the case of Gaussianity.
A review of these estimators along with details of the associated cross-validation procedure
can be found in the Supplementary Appendix B.
We begin by generating the standardised variates, y;, as

yt:Put,tzl,Q,...,T,

where y; = (Y1e, Yor, - - - Yne)', W = (Ug, Uay, .., uny)’, and P is the Cholesky factor asso-
ciated with the choice of the correlation matrix R = PP’. We consider two alternatives
for the errors, u;: (i) the benchmark Gaussian case where u; ~ IIDN(0,1) for all ¢ and
t, and (ii) the case where u; follows a multivariate t-distribution with v degrees of freedom
generated as

2

1/2
Ujp = <V_2) gy, fori=1,2,... N,

vt
where ¢;; ~ IIDN(0,1), and X?;,t is a chi-squared random variate with v > 4 degrees of
freedom, distributed independently of ¢, for all 7 and ¢. In order to investigate the robustness
of our results to the moment conditions, we experiment with a relatively low degrees of
freedom for the t-distribution and set v=8, which ensures that E (y%) exists and ¢, < 2.
Note that under p; = 0, ¢; = E(yiy% |p; =0) = (v—2)/(v—4), and with v = 8 we
have ¢;; = Ppax = 1.5, Given our theoretical findings, it is most likely that we obtain
better results if we experiment with higher degrees of freedom. One could further allow for
fat-tailed e;; shocks, say, though fat-tail shocks alone (e.g. generating wu; as such) do not
necessarily result in ¢;; > 1 as shown in Lemma 6 in the online supplementary Appendix
A. The same is true for normal shocks under case (i) where £ (yfty?t) = 1 whether P = Iy
or not. In such cases setting 6 = 1 is likely to be sufficient for the Frobenius norms given
the (N, T) combinations considered. But for the spectral norm a larger value of § might be
necessary. In order to verify and calibrate the values of § corresponding to the alternative
processes generating y;;, we also consider an estimated version of . For this purpose we
use a cross-validation procedure that corresponds to those used for the BL and CL methods
respectively. Details can be found in Section 3.7.

Next, the non-standardised variates &; = (14,79, - . . ,& Nt)/ are generated as
z, =a+~f + D"y, (33)
where D = diag(o11,09,...,0yn), @a = (a1,az,...,ay) and v = (7,79, .-, Tn)"-

We report results for N = {30,100,200} and 7" = 100, for the baseline case where
v =0 and a = 0 in (33). The properties of the MT procedure when factors are included
in the data generating process are also investigated by drawing v, and a; as IIDN (1, 1) for
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i=1,2,...,N, and generating f;, the common factor, as a stationary AR(1) process, but to
save space these results are made available upon request. Under both settings we focus on
the residuals from an OLS regression of x; on an intercept and a factor (if needed).

Given our interest in both the problems of regularisation of 3 and support recovery of
3., we consider two exactly sparse covariance (correlation) matrices:

Monte Carlo design A: Following Cai and Liu (2011) we consider the banded matrix

2 = (O',U) = diag(Al, AQ),

where A; = A+el /o, A = (aij)1<ij<n/2, Gij = (1—%% with € = max(—Apin(A),0)40.01
to ensure that A is positive definite, and Ay = 4I /5. X is a two-block diagonal matrix,
A, is a banded and sparse covariance matrix, and A, is a diagonal matrix with 4 along the
diagonal. Matrix P is obtained numerically by applying the Cholesky decomposition to the
correlation matrix, R = D™Y2XD~Y/? = PP/, where the diagonal elements of D are given
by 0 =14¢ fori=1,2,...,N/2and 0, =4, fori = N/2+1,N/2+1,...,N.

Monte Carlo design B: We consider a covariance structure that explicitly controls for the
number of non-zero elements of the population correlation matrix. First we draw the N x 1
vector b = (by, by, ..., by) with elements generated as Uniform (0.7,0.9) for the first and
last N, (< N) elements of b, where NV, = [N A }, and set the remaining middle elements of b

to zero. The resulting population correlation matrix R is defined by
R =1Iy + bb — diag (bb'), (34)

for which vTp,; —cp(N) > 0 and p,,;, = min; (‘sz ,pi; #0) > 0, in line with Theorem
3. The degree of sparseness of R is determined by the value of the parameter 5. We

are interested in weak cross-sectional dependence, so we focus on the case where g < 1/2
following Pesaran (2015), and set § = 0.25. Matrix P is then obtained by applying the
Cholesky decomposition to R defined by (34). Further, we set ¥ = DY2RD"'?, where the
diagonal elements of D are given by o;; ~ I[1D (1/2+ x*(2)/4),i=1,2,...,N.

3.1 Finite sample positive definiteness

As with other thresholding approaches, multiple testing preserves the symmetry of R and is
invariant to the ordering of the variables but it does not ensure positive definiteness of the
estimated covariance matrix when N > T

A number of methods have been developed in the literature that produce sparse inverse
covariance matrix estimates which make use of a penalised likelihood (D’Aspremont et al.
(2008), Rothman et al. (2008), Rothman et al. (2009), Yuan and Lin (2007), and Peng et al.
(2009)) or convex optimisation techniques that apply suitable penalties such as a logarithmic
barrier term (Rothman (2012)), a positive definiteness constraint (Xue et al. (2012)), an
eigenvalue condition (Liu et al. (2014), Fryzlewicz (2013), Fan et al. (2013) - FLM). Most of
these approaches are rather complex and computationally extensive.

A simpler alternative, which conceptually relates to soft thresholding (such as the smoothly
clipped absolute deviation by Fan and Li (2001) and the adaptive lasso by Zou (2006)), is
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to consider a convex linear combination of IN%MT and a well-defined target matrix which is
known to result in a positive definite matrix. In what follows, we opt to set as benchmark
target the NV x N identity matrix, Iy, in line with one of the methods suggested by El Karoui
(2008). The advantage of doing so lies in the fact that the same support recovery achieved
by Ry is maintained and the diagonal elements of the resulting correlation matrix do not
deviate from unity. Given the similarity of this adjustment to the shrinking method, we dub
this step shrinkage on our multiple testing estimator (S-MT),

Rz (€) = €Iy + (1 — &) Ry, (35)

with shrinkage parameter & € (&, 1], and &, being the minimum value of £ that produces a
non-singular R ur(§y) matrix. Alternative ways of computing the optimal weights on the
two matrices can be entertained. We choose to calibrate, £, since opting to use £, in (35),
as suggested in El Karoui (2008), does not necessarily provide a well-conditioned estimate
of Rs . Accordingly, we set £ by solving the following optimisation problem

2

Ry'~Rour()]| (36)

& =arg min
§otesg<l
where € is a small positive constant, and Ry is a reference invertible correlation matrix.
Finally, we construct the corresponding covariance matrix as

~1/2 ~

Yoz (€)= D "Ry (€9) D'

Further details on the S-MT procedure, the optimisation of (36) and choice of reference
matrix Ry are available in the Supplementary Appendix C.

3.2 Alternative estimators and evaluation metrics

Using the earlier set up and the relevant adjustments to achieve positive definiteness of the
estimators of ¥ where required, we obtain the following estimates of 3:
_ MThi: thresholding based on the MT" approach applied to the sample correlation matrix
(Xpr) using 6 =1 (Zpra)
_ MTy: thresholding based on the MT" approach applied to the sample correlation matrix
(Xpr) using 6 =2 (Zpr2)
MTy: thresholding based on the MT" approach applied to the sample correlation matrix
(3 7) using cross-validated § (3 MTS)
BLg: BL thresholding on the sample covariance matrix using cross-validated C' (% BLC)
CL2:~ CL thresholding on the sample covariance matrix using the theoretical value of
C=2(3cr2) N
CLg: CL thresholding on the sample covariance matrix using cross-validated C' (£ #)
S-MT7: supplementary shrinkage applied to MT} (ENJ S-MT.1)
S-MT,: supplementary shrinkage applied to MT5 (ENJ S-MT2)
S-MT5: supplementary shrinkage applied to MTj (f) S MT#;)
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BLg¢.: BL thresholding using the Fan et al. (2013) - FLM - cross-validation adjustment
procedure for estimating C' to ensure positive definiteness (f] B L,C’*)

CLg: CL thresholding using the FLM cross-validation adjustment procedure for esti-
mating C' to ensure positive definiteness (fJC L)

LW: LW shrinkage on the sample covariance matrix (2 Lwy)-

In accordance with the theoretical results and in view of Remark 11, we consider three
versions of the MT estimator depending on the choice of § = {1,2,5 } The BLg, CLy
and C'L; estimators apply the thresholding procedure without ensuring that the resultant
covariance estimators are invertible. The next six estimators yield invertible covariance
estimators. The S-MT estimators are obtained using the supplementary shrinkage approach
described in Section 3.1. BLg. and C'L 4. estimators are obtained by applying the additional
FLM adjustments. The shrinkage estimator, LW, is invertible by construction. In the
case of the M'T estimators where regularisation is performed on the correlation matrix, the
associated covariance matrix is estimated as DY2R 7 D/2.

For both Monte Carlo designs A and B, we compute the spectral and Frobenius norms of
the deviations of each of the regularised covariance matrices from their respective population
hI%

58] [5-5], =

where ¥ is set to one of the following estimators {f]MT’l, f)MTQ, iMTja ZBL,Ov f]c,;ﬁg,
iCL,C‘? is_MT’l, gs_MT’g, f)S_MT’(;, f)BL’é*, gcgéw EA)LWE}. The threshold values, 4, C' and
é*, are obtained by cross-validation (see Section 3.7 and supplementary appendix B.3 for
details). Both norms are also computed for the difference between !, the population inverse
of ¥, and the estimators {f);_IMT’l, f);_}Tg,f);_IMT’g, f;;;é*,f);;é*’ EA);VE} Further, we
investigate the ability of the thresholding estimators to recover the support of the true
covariance matrix via the true positive rate (TPR) and false positive rate (FPR), as defined
by (30) and (31), respectively. The statistics TPR and FPR are not relevant to the shrinkage
estimator LWy and will not be reported for this estimator.

3.3 Robustness of MT to the choice of p-values

We begin by investigating the sensitivity of the MT estimator to the choice of the p-value,
p, and the scaling factor determined by ¢ used in the formulation of ¢,(N) defined by (6).
For this purpose we consider the typical significance levels used in the literature, namely
p={0.01,0.05,0.10}, § = {1,2}, and a cross-validated version of §, denoted by 6. Tables 1a
and 1b summarise the spectral and Frobenius norm losses (averaged over 2000 replications)
for Monte Carlo designs A and B respectively, and for both distributional error assumptions
(Gaussian and multivariate ). First, we note that neither of the norms is much affected by
the choice of the p values when setting 6 = 1 or 2 in the scaling factor, irrespective of whether
the observations are drawn from a Gaussian or a multivariate ¢ distribution. Similar results
are also obtained using the cross validated version of §. Perhaps this is to be expected since
for N sufficiently large the effective p-value which is given by 2p/N? is very small and the
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test outcomes are more likely to be robust to the choice of p values as compared to the choice
of 9. The results in Tables 1a and 1b also show that in the case of Gaussian observations,
where ¢, = 1, the scaling factor using § = 1 is likely to perform better as compared to
0 = 2, but the reverse is true if the observations are multivariate ¢ distributed under which
the scaling factor using § = 2 is to be preferred.

It is also interesting that the performance of the MT procedure when using § is in line
with our theoretical findings. The estimates of ¢ are closer to unity in the case of experiments
with ¢ .. = 1, and are closer to § = 2 in the case of experiments with ¢, = 1.5. The
average estimates of & shown in Tables 1a and 1b are also indicative that a higher value of §
is required when observations are multivariate ¢ distributed. Finally, we note that the norm
losses rise with N given that T is kept at 100 almost across the board in all the experiments.
Overall, the simulation results support using a sufficiently high value of § (say around 2) or
its estimate, 5 , obtained by cross validation.

3.4 Norm comparisons of M1, BL, CL, and LW estimators

In comparing our proposed estimators with those in the literature we consider a fewer num-
ber of Monte Carlo replications and report the results with norm losses averaged over 100
replications, given the use of the cross-validation procedure in the implementation of MT,
BL and CL thresholding. This Monte Carlo specification is in line with the simulation set
up of BL and CL. Our reported results are also in agreement with their findings.

Tables 2 and 3 summarise the results for the Monte Carlo designs A and B, respectively.
Based on the results of Section 3.3, we provide norm comparisons for the MT estimator using
the scaling factor where § = 2 and &, and the conventional significance level of p = 0.05.
Initially, we consider the threshold estimators, the two versions of MT (M7, and MTj;) and
CL (CLy and CLg) estimators, and BL without further adjustments to ensure invertibility.
First, we note that the MT and C'L estimators (both versions for each case) dominate the
BL estimator in every case, and for both designs. MT performs better than C'L, when
comparing the versions of the two estimators using their respective theoretical thresholding
values and their estimated equivalents. The outperformance of MT' is more evident as N
increases and when non-Gaussian observations are considered. The same is also true if we
compare MT and C'L estimators to the LW shrinkage estimator, although it could be argued
that it is more relevant to compare the invertible versions of the MT and C'L estimators
(namely EICL’CA*, ,EV:S_MT72 and f]s_ MT,S) with 3 tw,- In such comparisons by Lw, performs
relatively better, nevertheless, 3| LWy is still dominated by > s-mr,2 and ) S-MT5 with a few
exceptions in the case of design A and primarily when N = 30. However, no clear ordering
emerges when we compare 3 Lw, with ic L.Cw

3.5 Norm comparisons of inverse estimators

Although the theoretical focus of this paper has been on estimation of X rather than its
. . . . =-1 ~—1 ~—1 ~—1 ~—1
inverse, it is still of interest to see how well Xg /75, g y15, Xpp ovs Xop ov, and Xrwy
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estimate X!, assuming that X! is well defined. Table 4 provides average norm losses for
Monte Carlo design B for which 3 is positive definite. 3 for design A is ill-conditioned
and will not be considered any further here. As can be seen from the results in Table 4,

~_1 ~—1 ~—1 =—1
both ¥g 1/ and Xg yp 5 perform much better than ¥z, #. and ¥ 4. for Gaussian and
~-1
multivariate ¢-distributed observations. In fact, the average spectral norms for ¥5; 4. and

i;ic include some sizeable outliers, especially for N < 100. However, the ranking of the
different estimators remains the same if we use the Frobenius norm which appears to be less
sensitive to the outliers. It is also worth noting that f];_lMTz and i;_er 5 perform better than
LWy, for all sample sizes and irrespective of whether the observations are drawn as Gaussian
or multivariate ¢. Finally, using 6 rather than § = 2 when implementing the MT method
improves the precision of the estimated inverse covariance matrix across all experiments.

3.6 Support recovery statistics

Table 5 reports the true positive and false positive rates (TPR and FPR) for the support
recovery of 3 using the multiple testing and thresholdmg estimators. In the comparlson set
we include three versions of the MT estimator (EMT 1, EMT 5 and EMT 5)s EBL & ECLVQ, and

Yere Again we use 100 replications due to the use of cross-validation in the implementation
of MT, BL and CL thresholding. We include the MT" estimators for choices of the scaling
factor where 6 = 1 and 0 = 2, computed at p = 0.05, to see if our theoretical result, namely
that for consistent support recovery only the linear scaling factor, where o = 1, is needed, is
borne out by the simulations. Further, we implement M7 using 5 to verify that the support
recovery results under MTj correspond more closely to those under M7, in line with the
findings of Theorem 3. For consistent support recovery we would like to see F'PR values
near zero and T'PR values near unity. As can be seen from Table 5, the FFPR values of all
estimators are very close to zero, so any Comparlsons of different estimators must be based
on the T'PR values. Comparing the results for > mr,1 and > MT2 We find that as predicted
by the theory (Theorem 3 and Remark 12), TPR values of > v, are closer to unity as
compared to the TPR values of > mT2. This is supported by the T'PR values of > MT
as well. Similar results are obtained for the M'T estimators for different choices of the p
values. Table 6 provides results for p = {0.01,0.05,0.10}, and for 6 = {1, 2, 5} using 2,000
replications. In this table it is further evident that, in line with the conclusions of Section
3.3, both the TPR and the F'PR statistics are relatively robust to the choice of the p values
irrespective of the scaling factor, or whether the observations are drawn from a Gaussian or a
multivariate ¢ distribution. This is especially true under design B, since for this specification
we explicitly control for the number of non-zero elements in ¥, that ensures the conditions
of Theorem 3 are met.

Turning to a comparison with other estimators in Table 5, we find that the M7 and
CL estimators perform substantially better than the BL estimator. Further, allowing for
dependence in the errors causes the support recovery performance of BL5, CLy and CL4 to
deteriorate noticeably while MT;, MT, and MTj remain remarkably stable. Finally, again
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note that T'PR values are higher for design B. Overall, the estimators > MT,1 OF > MT do
best in recovering the support of 3 as compared to other estimators, although the results of
CL and MT for support recovery can be very close, which is in line with the comparative
analysis carried out in terms of the relative norm losses of these estimators.

3.7 Cross-validation of §

We calibrate ¢, the parameter of the critical value function, ¢,(N), in the MT approach,
by following closely the cross-validation procedure implemented in BL and CL. Importantly,
Bickel and Levina (2008a) show theoretically the validity of this approach for the ‘sample
splitting’, ‘2-fold cross-validation’ and more general ‘V-fold cross-validation’ procedures.
More precisely, we perform a grid search for the choice of § over the range: § =
{¢: Omin < ¢ < dmax - We set dpin = 1.0 and 00 = 2.5 and impose either fixed increments
of 0.1 or N-dependent increments of 1/N.5 At each point of the range, ¢, we generate z;,

i=1,2,...,N,t=1,2,...,T and select the N x 1 column vectors @, = (21, Tas, ..., Tn:) ,

t =1,2,...,T which we randomly reshuffle over the ¢-dimension. This yields a new set of
!/

N x 1 column vectors :BES) = (mgt), mg‘;), e ,xg\s,%) for the first shuffle s = 1. We repeat this

reshuffling S times in total where we set S = 50. We consider this to be sufficiently large
(FLM suggested S = 20 while BL recommended S = 100 - see also Fang et al. (2016)).
For each shuffle s = 1,2,...,9, we divide z® = (zcg ), :zzés), ceey :zzgf)) into two subsam-
ples of size N x T} and N x Ty, where 75 = T — T;. The theoretically ‘justified’ split

) and Ty = L. In our simulation study

suggested in BL is given by T} = T <1 (— ew

)
we set 73 = ZF and Tp = L. Let flis) = (658)) with elements 6" Z)] IR S x(s)

and 2&8) = (&é%) with elements &ésﬂ?j =T Y xﬁf)xgt’, i,j = 1,2,..., N denote the

sample covariance matrices generated using 77 and T; respectively, for each shuffle s. The

: . : : 56 A1 V26 [pe)] Y2
corresponding sample correlation matrices are given by R1 = |D; >, |D,
} ()12 2 (s) [om (5)]-1/2 . . .
and R( ) [D; )] 2; : [Dé )} respectively, where D = dlag( o, 11, A§2)2’ . 755,1271\[)»

1 =1,2. We regularise 1%55) using the MT method in (5) and compute the following expres-

i B
|77 @ -2

sion,

: (38)

01 |

for each ¢ and
d=arg inf  J(c). (39)

6min SCS(Smax

The final estimator of the correlation matrix is then given by ﬁg and the associated covari-
ance matrix estimator, 3, is computed as in (7).

’The sample size dependent alternative provides slight improvement in estimation precision for &, but is
computationally more expensive as N rises.

19



3.8 Computational demands of the different thresholding methods

Table 7 reports the relative execution times of the different thresholding methods studied.
All times are relative to the time it takes to carry out the computations for the MT5 es-
timator. The computational times shown for the methods that use a calibrated threshold
parameter (i.e. MT;, BLs and CLp) assume a sample-dependent grid in their respective
CV procedures. It took 0.010, 0.013, and 0.014 seconds to apply the MT method in Matlab
to a sample of N = {30,100, 200}, respectively, and T' = 100 observations using a desktop
PC. The execution times of MT; and M5 are very similar and differ only slightly across the
experiments with different p-values. In contrast, the BLs and UL thresholding approaches
are computationally much more demanding. Their computations took between about 12 and
485257 times (depending on N) longer than the MT, approach, for the same sample sizes
and computer hardware. The BL; method was less demanding than the C'Ls method -
it took between about 12 and 584 times longer than the M7T5 approach. Even C'Ly, which
does not require estimation of the threshold parameter, took up to 19 times longer than
the M5 approach. Thus, compared with other thresholding methods, MT} and MT, pro-
cedures have a clear computational advantage over the C'L and BL procedures. This is
not a surprising outcome, considering that M7} and MT, do not involve cross validation.
But we find similar computational advantages for the MT procedure when we compare its
cross-validated version, M T}, with C'Ls. The execution times of MT}; were between 1278
and 482038 faster than C'Ls. But when compared to BL 4, we find that BLg is somewhere
between 24 and 2634 faster to compute than MTj;. However, when using a fixed point in-
crement in the implementation of the MT}; procedure, the computational advantage of BL
over MTj disappears.

4 Concluding Remarks

This paper considers regularisation of large covariance matrices particularly when the cross
section dimension N of the data under consideration exceeds the time dimension 7. In this
case the sample covariance matrix, 2, becomes ill-conditioned and is not a satisfactory
estimator of the population covariance.

A regularisation estimator is proposed which makes use of insights from the multiple
testing literature to obtain threshold values for sample correlation coefficients. The proposed
MT estimator of the correlation coefficient (p,;) is set to zero when the sample correlation,
in absolute value, is below the threshold, otherwise the MT estimator is set to the sample
correlation coefficient. It is shown that the resultant estimator has a convergence rate of
the order of myc,(N)/v/T under the spectral norm, and /myN/T under the Frobenius
norm, where N is the number of units each observed T' times, my measures the degree of
sparsity of the population correlation matrix, and ¢,(N) = ®~* (1 — 3£5), where 7! () is
the inverse of the cumulative distribution of a standard normal variate, and p is the nominal
size of the test. ¢,(IV) directly corresponds to 1/In (N). Our analysis allows for non-Gaussian
observations and provides guidance as to the choice of critical value function for thresholding
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in terms of the degree to which underlying observations are dependent even if p;; = 0. The
choice of 9 depends on the degree of non-Gaussianity of the underlying observations and
yields spectral norm results that are similar to the rates obtained in the literature. But for
the Frobenius norm we obtain better rates than those established in the literature.

The numerical properties of the proposed estimator are investigated using Monte Carlo
simulations. It is shown that the MT estimator performs well, and generally better than
the other estimators proposed in the literature. The simulations also show that in terms of
spectral and Frobenius norm losses, the MT' estimator is reasonably robust to the choice

of p in the threshold criterion, |,b”‘ > 7121 (1 — %), where f(N) = ¢;N°, with c;
and ¢ being finite positive constants, particularly when setting 6 = 2. For support recovery,

better results are obtained if 6 = 1.
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Table la: Spectral and Frobenius norm losses for the MT" estimator using significance
levels p = {0.01,0.05,0.10} and scaling factors with § = {1, 2, 5}, for T'= 100

Monte Carlo design A

N\p 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

u;;~ Gaussian

Spectral norm
30 1.70(0.49) 1.68(0.49) 1.71(0.49) 1.89(0.51) 1.79(0.50) 1.75(0.50)  1.71(0.49) 1.68(0.49) 1.69(0.49)
100 2.61(0.50) 2.51(0.50) 2.50(0.50)  3.11(0.50) 2.91(0.50) 2.84(0.50)  2.62(0.50) 2.52(0.50) 2.51(0.50)
200 3.04(0.48) 2.92(0.49) 2.89(0.49) 3.67(0.47) 3.46(0.47) 3.37(0.47)  3.05(0.48) 2.93(0.49) 2.90(0.49)
Frobenius norm
30 3.17(0.45) 3.14(0.50) 3.20(0.53)  3.49(0.42) 3.32(0.43) 3.26(0.43)  3.19(0.44) 3.13(0.48) 3.16(0.52)
100 6.67(0.45) 6.51(0.51) 6.60(0.55)  7.75(0.40) 7.34(0.41) 7.17(0.42)  6.70(0.45) 6.52(0.50) 6.57(0.54)
200 9.87(0.46) 9.60(0.53) 9.73(0.58) 11.76(0.40) 11.15(0.41) 10.89(0.42) 9.91(0.46) 9.62(0.52) 9.69(0.57)

u;;~ multivariate t—distributed with 8 degrees of freedom

Spectral norm
30 2.26(1.08) 2.42(1.20) 2.55(1.26)  2.29(0.90) 2.24(0.99) 2.24(1.03) 2.23(0.95) 2.32(1.04) 2.39(1.08)
100 3.85(4.84) 4.20(5.28) 4.46(5.48) 3.78(3.78) 3.71(4.12) 3.71(4.27) 3.67(3.81) 3.83(4.11) 3.93(4.21)
200 4.49(3.46) 5.04(4.34) 5.44(4.77)  4.26(1.80) 4.20(2.21) 4.19(2.37)  4.20(2.43) 4.45(2.78) 4.57(2.94)
Frobenius norm
30 4.06(1.14) 4.35(1.32) 4.60(1.40)  4.12(0.90) 4.04(1.00) 4.03(1.06)  4.03(1.00) 4.19(0.13) 4.32(1.19)
100 8.88(5.17) 9.75(5.67) 10.49(5.87) 9.04(4.04) 8.80(4.40) 8.74(4.57)  8.65(4.16) 9.09(4.48) 9.41(4.59)
200 12.96(4.23) 14.50(5.41) 15.81(5.95) 13.25(2.10) 12.85(2.54) 12.71(2.76) 12.57(2.97) 13.25(3.48) 13.73(3.67)

Cross validated values of

N\p 0.01 0.05 0.10
u;;~ Gaussian

30 1.08(0.11) 1.10(0.12) 1.12(0.13)
100 1.04(0.06) 1.05(0.07) 1.06(0.08)
200 1.03(0.05) 1.03(0.06) 1.04(0.06)
u;;~ multivariate ¢t—distr. with 8 dof
30 1.13(0.18) 1.19(0.22) 1.25(0.25)
100 1.12(0.18) 1.18(0.22) 1.23(0.25)
200 1.15(0.20) 1.20(0.23) 1.24(0.25)

Note: The MT approach is implemented using 6 = 1, 6 = 2, and 3, computed using cross-validation.
Norm losses and estimates of §, §, are averages over 2,000 replications. Simulation standard deviations are
given in parentheses.
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Table 1b: Spectral and Frobenius norm losses for the MT estimator using significance
levels p = {0.01,0.05,0.10} and scaling factors with § = {1, 2, 5}, for T'= 100

0=1

Monte Carlo design B
0 =2

5

N\p

0.01 0.05 0.10

0.01 0.05 0.10

0.01 0.05 0.10

u;;~ Gaussian

30
100
200

30
100
200

Spectral norm

0.48(0.16) 0.50(0.16) 0.53(0.16)
0.75(0.34) 0.76(0.32) 0.78(0.31)
0.71(0.22) 0.74(0.20) 0.77(0.20)
Frobenius norm

0.87(0.17) 0.91(0.18) 0.97(0.19)
1.56(0.24) 1.66(0.24) 1.77(0.24)
2.16(0.18) 2.32(0.20) 2.50(0.21)

0.50(0.20) 0.49(0.18) 0.48(0.17)
0.89(0.43) 0.81(0.39) 0.79(0.37)
0.85(0.33) 0.78(0.28) 0.75(0.26)

0.89(0.20) 0.87(0.17) 0.86(0.17)
1.67(0.34) 1.60(0.29) 1.58(0.27)
2.25(0.24) 2.19(0.21) 2.16(0.20)

0.48(0.17) 0.49(0.16) 0.49(0.16)
0.76(0.35) 0.76(0.34) 0.76(0.34)
0.72(0.24) 0.72(0.22) 0.72(0.22)

0.86(0.17) 0.88(0.17) 0.88(0.17)
1.56(0.25) 1.58(0.24) 1.58(0.25)
2.15(0.18) 2.18(0.19) 2.18(0.20)

u;:~ multivariate {—distributed with 8 degrees of freedom

30
100
200

30
100
200

Spectral norm

0.70(0.39) 0.78(0.43) 0.84(0.45)
1.16(0.97) 1.32(1.10) 1.42(1.18)
1.36(1.73) 1.65(2.05) 1.83(2.20)
Frobenius norm

1.23(0.42) 1.40(0.48) 1.53(0.51)
2.39(1.12) 2.90(1.31) 3.25(1.40)
3.57(2.13) 4.52(2.54) 5.18(2.72)

0.67(0.33) 0.67(0.35) 0.67(0.37)
1.15(0.75) 1.11(0.80) 1.10(0.83)
1.14(1.03) 1.13(1.21) 1.14(1.28)

1.15(0.35) 1.16(0.38) 1.17(0.39)
2.17(0.77) 2.15(0.86) 2.16(0.90)
2.97(1.21) 2.98(1.43) 3.01(1.53)

0.67(0.33) 0.68(0.35) 0.68(0.36)
1.10(0.72) 1.10(0.77) 1.11(0.80)
1.16(1.06) 1.19(1.20) 1.20(1.27)

1.17(0.36) 1.19(0.38) 1.20(0.39)
2.17(0.76) 2.22(0.85) 2.24(0.89)
3.06(1.27) 3.17(1.48) 3.21(1.57)

N\p

Cross validated values of §

0.01 0.05 0.10

u;;~ (Gaussian

30
100
200

1.27(0.27) 1.46(0.35) 1.61(0.36)
1.25(0.24) 1.43(0.31) 1.56(0.32)
1.23(0.22) 1.36(0.26) 1.49(0.27)

u;;~ multivariate ¢t—distr. with 8 dof

30
100
200

1.45(0.38) 1.72(0.39) 1.87(0.35)
1.59(0.41) 1.76(0.40) 1.85(0.37)
1.68(0.44) 1.78(0.41) 1.85(0.39)

The MT approach is implemented using § = 1, § = 2, and 37 computed using cross-validation. Norm
losses and estimates of §, d, are averages over 2,000 replications. Simulation standard deviations are given

in parentheses.
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Table 2: Spectral and Frobenius norm losses for different regularised covariance matrix
estimators (7" = 100) -

Monte Carlo design A

N =30 N =100 N =200
Norms Norms Norms
Spectral ~ Frobenius Spectral  Frobenius  Spectral  Frobenius
u;;~ Gaussian

Error matrices (X — X)
MT, 1.85(0.53) 3.38(0.40) 2.83(0.50) 7.29(0.42) 3.45(0.43) 11.17(0.38)
MT; 1.75(0.55) 3.21(0.49) 2.44(0.50) 6.48(0.50) 2.95(0.45) 9.65(0.48)
BLs  5.30(2.16) 7.61(1.23) 8.74(0.06) 16.90(0.10) 8.94(0.04) 24.26(0.13)
CLs 1.87(0.55) 3.39(0.44) 2.99(0.49) 7.57(0.44) 3.79(0.47) 11.88(0.42)
CLa 1.82(0.58) 3.33(0.56) 2.54(0.50) 6.82(0.51) 3.02(0.46) 10.22(0.59)
S-MT, 3.36(0.78) 4.45(0.63) 5.83(0.34) 10.95(0.47) 6.47(0.21) 16.64(0.35)
S-MT; 2.67(0.81) 3.85(0.65) 5.08(0.40) 9.70(0.51) 5.79(0.27) 14.91(0.46)
BLp.  7.09(0.10) 8.62(0.09) 8.74(0.06) 16.90(0.10) 8.94(0.04) 24.25(0.10)
CLg.  7.05(0.16) 8.58(0.12) 8.71(0.07) 16.85(0.11) 8.94(0.04) 24.23(0.09)
LW 2.99(0.47) 6.49(0.29) 5.20(0.34) 16.70(0.19) 6.28(0.20) 26.84(0.14)

u;;~ multivariate {— distributed with 8 degrees of freedom

Error matrices (X — 3)
MT, 2.17(0.72) 4.02(0.88) 3.44(0.98) 8.52(1.17) 4.00(0.83) 12.79(1.66)
MT; 2.27(0.88) 4.20(1.11) 3.59(1.39) 8.76(1.65) 4.32(1.53) 13.28(2.83)
BL4 6.90(0.82) 8.75(0.55) 8.74(0.10) 17.26(0.30) 9.00(0.42) 24.93(1.02)
CLy,  2.55(0.93) 4.53(1.00) 4.63(1.11) 10.35(1.48) 5.92(0.81) 16.43(1.74)
CLa 2.27(0.76) 4.24(0.94) 3.85(1.51) 9.44(2.33) 5.04(2.04) 15.65(4.71)
S-MT, 3.28(0.80) 4.76(0.77) 5.84(0.45) 11.47(0.62) 6.48(0.32) 17.27(0.71)
S-MT; 2.86(0.92) 4.51(0.97) 5.30(0.52) 10.76(0.77) 6.00(0.39) 16.36(1.04)
BLp.  7.06(0.13) 8.84(0.30) 8.74(0.10) 17.25(0.31) 8.95(0.08) 24.84(0.55)
CLg.  7.01(0.16) 8.77(0.30) 8.73(0.11) 17.23(0.29) 8.94(0.08) 24.77(0.53)
LWy 3.35(0.51) 7.35(0.50) 5.67(0.46) 18.04(0.45) 6.60(0.43) 28.18(0.53)

Note: Norm losses are averages over 100 replications. Simulation standard deviations are given in

parentheses. O = {ZMT% EMTé’ ZBL G 2C’L 2, ECL o 2S MT,2, ES-MT,(S’ EBL7C*7 ECLC ) 2LVV }
Yvre, EMT(;, 25 M2 and ES M7 are computed using p = 0.05. (M1, S-MT3) and (MTy, S-MTj)

are thresholding based on multiple testing with critical value ®~ (1 — %), where f(N) = N? and

f(N) =N 3, respectively, with ) being estimated by cross-validation. BL is Bickel and Levina universal
thresholding, C'L is Cai and Liu adaptive thresholding, > MT,2 and > MT Are based on MT3 and MTj.

25 MT,2 and ES MT.$ apply supplementary shrinkage to 2MT2 and 2MT67 EBL & and ZCL ¢ are based
on C which is obtained by cross-validation, > pr.c- and > or.¢~ employ the further adjustment to the cross-

validation coefficient, C*, proposed by Fan et al. (2013), ECL’Q is CL’s estimator with C' = 2 (the theoretical
value of (). 3! Lwy, is Ledoit and Wolf’s shrinkage estimator applied to the sample covariance matrix.
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Table 3: Spectral and Frobenius norm losses for different regularised covariance matrix
estimators (7" = 100) - Monte Carlo design B
N =30 N =100 N =200
Norms Norms Norms
Spectral  Frobenius Spectral Frobenius Spectral Frobenius

u;;~ Gaussian

Error matrices (X — )

M1y 0.49(0.18) 0.89(0.19) 0.87(0.37) 1.63(0.28) 0.73(0.24) 2.15(0.19
MT; 0.48(0.14) 0.89(0.16) 0.79(0.31) 1.57(0.23) 0.67(0.18) 2.15(0.17
BLe 0.91(0.50) 1.35(0.43) 1.40(0.95) 2.25(0.78) 2.53(0.55) 3.49(0.32
CLy 0.49(0.17) 0.90(0.18) 1.00(0.48) 1.77(0.44) 0.90(0.37) 2.30(0.30

S-MT; 0.66(0.23) 1.07(0.18) 1.45(0.44) 2.08(0.29) 1.12(0.30) 2.38(0.19
BLp.  1.19(0.46) 1.63(0.40) 3.32(0.20) 3.90(0.14) 2.73(0.11) 3.61(0.08
CLp.  1.08(0.46) 1.53(0.46) 3.34(0.15) 3.92(0.06) 2.73(0.10) 3.61(0.08
LW, 1.05(0.13) 2.07(0.10) 2.95(0.26) 4.47(0.09) 2.46(0.06) 6.01(0.03

u;~ multivariate {—distributed with 8 degrees of freedom

(0.19) (0.37) (0.28) (0.24) (0.19)

(0.14) (0.16) (0.31) (0.23) (0.18) (0.17)

(0.50) (0.43) (0.95) (0.78) (0.55) (0.32)

(0.17) (0.18) (0.48) (0.44) (0.37) (0.30)

CLy  0.49(0.15) 0.92(0.17) 0.83(0.31) 1.71(0.28) 1.14(0.83) 2.54(0.58)
S-MT, 0.68(0.27) 1.08(0.21) 1.53(0.53) 2.16(0.38) 1.23(0.41) 2.44(0.26)
(0.23) (0.18) (0.44) (0.29) (0.30) (0.19)

(0.46) (0.40) (0.20) (0.14) (0.11) (0.08)

(0.46) ( § (0.15) (0.06) (0.10) ( ;

Error matrices (X — 3)

MT,  0.64(0.24) 1.12(0.24) 1.05(0.45) 2.13(0.49) 1.29(2.32) 3.15(2.66)
MT;  0.66(0.25) 1.15(0.26) 1.03(0.42) 2.17(0.53) 1.30(1.90) 3.29(2.22)
BLs  1.36(0.40) 1.84(0.35) 2.70(0.94) 3.58(0.74) 2.70(0.29) 4.08(0.67)
CL,  0.71(0.29) 1.21(0.30) 1.69(0.70) 2.73(0.70) 1.62(0.57) 3.31(0.65)
CLs  0.80(0.39) 1.33(0.39) 2.03(1.08) 3.07(0.90) 2.19(0.78) 3.72(0.62)
S-MT, 0.69(0.26) 1.18(0.23) 1.41(0.57) 2.36(0.47) 1.32(0.79) 3.02(0.87)
S-MT; 0.69(0.25) 1.19(0.22) 1.36(0.49) 2.34(0.42) 1.30(0.78) 3.10(0.87)
BLg.  1.49(0.26) 1.98(0.21) 3.33(0.24) 4.07(0.18) 2.77(0.37) 4.04(0.56)
CLp.  1.26(0.40) 1.79(0.40) 3.35(0.17) 4.08(0.14) 2.73(0.14) 4.01(0.42)
LW, 1.13(0.15) 2.25(0.11) 3.14(0.21) 4.68(0.11) 2.52(0.08) 6.18(0.13)

See the note to Table 2.
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Table 4: Spectral and Frobenius norm losses for the inverses of different regularised
covariance matrix estimators for Monte Carlo design B - 7" = 100

N =30 N =100 N =200
Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral ~ Frobenius

=T
Error matrices (371-3 )

u;:~ Gaussian

S-MT 4.44(1.23) 2.66(0.32) 15.81(2.63) 5.90(0.45)  14.24(2.37)  5.50(0.38)
S-MTj 4.36(1.22) 2.64(0.31) 15.25(2.78) 5.80(0.48)  13.36(2.47)  5.39(0.37)
BLg.  3.8%x10%(2.4x10%) 19.56(58.88) 1.2x10%(1.1x10%) 12.16(33.25) 41.07(143.74) 7.66(3.17)
CLg.  1.9%10%(1.7x10%) 10.92(42.39)  51.99(241.39) 8.16(4.23)  28.45(24.37) 7.35(1.11)
LWy, 11.03(0.58) 4.26(0.09) 31.04(0.64) 8.62(0.06)  31.81(0.21)  9.40(0.05)
u;:~ multivariate t—distributed with 8 degrees of freedom
S-MT, 3.45(1.61) 2.44(0.39) 12.78(3.13) 5.55(0.55)  11.57(4.17)  5.58(0.66)
S-MT; 3.43(1.63) 2.45(0.40) 12.37(3.27) 5.51(0.59)  11.28(3.97)  5.65(0.67)
BLg.  157.26(1.0x10%)  6.11(11.28)  349.35(3.1x10%)  9.80(17.03)  28.58(22.06) 7.77(1.04)
CLg 85.82(546.85) 5.53(7.84)  517.27(4.8x10%) 10.07(21.25) 25.61(3.55)  7.54(0.50)
LWy, 12.08(1.19) 4.48(0.20) 31.78(1.32) 8.74(0.23)  32.06(1.00)  9.50(0.33)

o1 =1 ~—1 ——1 ~—1 o1
Note: ¥ = {X¥g yr2, Bs.yrs 2BL,¢=» Ser,é= 2w, |- See also the note to Table 2.

Table 5: Support recovery statistics for different multiple testing and thresholding
estimators - 7" = 100
Monte Carlo design A Monte Carlo design B
N MTy MT, MT; BLs CLy CLs N MTy MT, MT; BLy CLy CLg
u;;~ Gaussian

30 TPR 0.80 0.71 0.79 0.29 0.72 0.78 30 TPR 1.00 0.98 1.00 0.64 0.98 1.00

FPR 0.00 0.00 0.00 0.04 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

100 TPR 0.69 0.57 0.69 0.00 0.56 0.68 100 TPR 1.00 0.98 1.00 0.80 0.94 0.99

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

200 TPR 0.66 0.53 0.66 0.00 0.50 0.65 200 TPR 1.00 0.96 0.99 0.11 0.88 0.78

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

u;;~ multivariate t—distributed with 8 degrees of freedom

30 TPR 0.80 0.72 0.79 0.03 0.62 0.74 30 TPR 1.00 0.98 0.99 0.26 0.89 0.82

FPR 0.01 0.00 0.00 0.00 0.00 0.00 FPR 0.01 0.00 0.00 0.00 0.00 0.00

100 TPR 0.69 0.58 0.67 0.00 0.43 0.57 100 TPR 1.00 0.97 0.98 0.27 0.70 0.57

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

200 TPR 0.66 0.53 0.64 0.00 0.35 0.47 200 TPR 0.99 0.93 0.95 0.05 0.57 0.30

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00
Note: TPR is the true positive rate and FPR is the false positive rate defined by (30) and (31), respec-
tively. MT estimators are computed with p = 0.05. For a description of other estimators see the note to

Table 2. The TPR and FPR numbers are averages over 100 replications
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Table 7: Relative execution times of different thresholding methods
T =100
N=30 N=100 N =200
MT,  1.000 1.000 1.000
MT;  0.996 0.971 1.017
MT; 3584 497.4 3219
BLs 1153 106.3 584.8
CLy 1.924 5.629 19.12
CLg 1314 63481 485257

Note: All times are relative to the MT5 estimator.
See Table 2 for a note on the thresholding methods.

Appendix: Mathematical proofs of theorems for the MT
estimator

The lemmas referred to in this Appendix are stated and proved in a supplement which will
be available online.

Proof of Proposition 1. The results for E (,bij,T) and Var (ﬁiij) are established
in Gayen (1951) using a bivariate Edgeworth expansion approach. This confirms earlier
findings obtained by Tschuprow (1925) (English Translation, 1939) who shows that re-
sults (9) and (10) hold for any law of dependence between z;; and z;. See, in particu-
lar, p. 228 and equations (53) and (54) in Gayen (1951). Using (10) and (12) we have
limr_ o [TVar (meﬂ = K,(#;;). The uniform boundedness of |K,,(8;;)| and K,(8;;) fol-
lows directly from the assumption that the sixth-order moment of y;; is uniformly bounded.
The uniform boundedness of the other moments, E(y3y;:) and E (y7y3), follows by appli-
cation of Holder’s and Cauchy—Schwarz inequalities as given below:

sup [ B(Zaf)| < sup B(yifi]) < sup { [B(wal 9] [B (al")] "}
17, 17, 2],

< sup [E(ul")]"sup [ ()" < K
1, D

and
3 3 4\71/4 3 14/3\1%/4
Sug{E(yuij < SHPE(\yuyﬁ\)Ssug{[E(lyitl )] [E(}yﬂ )] }
17, 17, 27,

= sup {[B(lual )" [ (el )"} = sup BJyil*) < K.

ij.t

Consider now the case where y;; for all i are Gaussian. Then E(y}) = 3, and for all i # j
we have

Yit = PijYjt T Mg
where E(n;,) =0, Var(n;,) = 1 — p};, and n;, and y;; are independently distributed. Hence,

E(y?tyit) = E[y?t(pijyjt + 77jt)] = pijE(y;'lt) = 3pz’j'
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E(yay2) = Bl (0 + 0 + 20,y5m50)) = 3p5 + (1 — p) = 1+ 207,

Using the above results it now follows that
ki (4,0) = £5(0,4) = 0, £5(3,1) = £4(1,3) = 0,

which in turn establishes, when used in (11) and (12), that K (0;;) = —3p,;(1 — p2;) and
K (8;5) = (1= pf)*.

m
Proof of Proposition 2. Under Assumption 2, for a given i and j, set &, = (yit, Yse it Y30, Yieljt) =
(&4, 91y - -+, Esy)'s where yy = (2 —11;) /0. To simplify the notation we drop the subscripts
1, j. Define

T
Er=T" th = (&ir Eorr -+ ag5T)ly
=1

and note that by Assumption 2, §,, for t = 1,2,..., T, are random draws from a common
distribution with non-zero density, the elements of £, are continuously differentiable functions
of yi = (Yir, yjr)' pi;r> the sample correlation coefficient of z;; and xj;, can be written as

S Y ¥ VR
T ) P (e -2)”

where &0 > ETT, and &, > EgT See also Bhattacharya and Ghosh (1978) - p. 434.
It is also easily seen that p, = E&;) = (0,0,1,1,p;;)', and H (p,g) = p,;j, and hence
VT [H (&) — H (Hg)] =T (ﬁij,T — pij) , where H (£) is continuous and differentiable in
€, and all derivatives of H (§) are continuous in a neighbourhood of pg; 1, &1, 85, .-+, &5
are linearly independent, and F |¢,,|° < oo, for k = 1,2,...,5, for some positive integer
s > 3. Hence, Theorem 2 of Bhattacharya and Ghosh (1978) can be applied to p;; r, which
establishes the validity of the Edgeworth expension, (16). To prove (17) using (16) we first
note that (for some ar > 0)

Pr (Zij,T > CLT) = 1—Pr (zij,T < aT)

= 1_c]j)<aT)_inr/29r(aT) (CLT)—i-O[ (s— 1)/2}

— CI)(—aT)—(27r)_1/2€Xp( )ZT "2g, (ar) + O [T~67D/2] |

and by the inequality (A.1) (in the online supplement), we have

2

1 2 5—2
Pr(zijr > ar) < 5 eXP (—a—T> + (2m) Y2 exp (—C%T) ZT"”/2 lg- (ar)| + O [T_(S_l)/ﬂ :
r=1

2
(40)
But g, (ar) is a polynomial of degree 3r — 1 in ar, which is odd for even r, and even for odd
r. For r =1 and r = 2 we have

191(2)] < lgul + lgiz] |2, and |g2(2)] < lgaal |2] + [gaa [ + |ges| |2,
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where g;; are fixed coeflicients that depend on the cumulants of £. Result (17) now follows
from (40) by separating the constant terms of g,(ar) from the powers of ar. Similarly, using
(16) for ap > 0 we have

Pr(zijr < —ar) ZT /2, ) élar) + O [Tf(sfl)/ﬂ ’

which upon using (A.1) yields

1 a% B a2\ <= . (s
Pr(zijr < —ar) < 3 &Xp (—7)+(27T) 2 exp (—?) ;T 2\gr (—ar)|+O [T~ED2]
and result (18) follows. m

Proof of Theorem 1. First we note that (see Horn and Johnson (1985) - p.297)

|- R| < |R-R| = g S s,

1<i<N

where
bl],T:ﬁ’Lj,T‘[ HpU,T| >9(N7T)}’ 221,2,,N—1, j:Z+1>aN7

0 (N,T) = T-2¢,(N), and ¢, (N) = &~ (1 - %) > 0. Note that 0 (N,T) > 0, and
0 (N,T) = o(1) by assumption. Let p;; = p,;I [|p;;] > 0 (N, T)], and further note that

i pij| ) (41)

m?XZ |pij,T - pij‘ < m?XZ ‘pz‘j,T -
J j

where to simplify the notation we will be using max; for max;<;<y. We begin with the
second term of (41) and write

m?XZ }pfj _pij| = m?XZ ‘Pz‘j[ [|p¢j| >0 (N, T)] _Pz‘j’ =
J J

< max ) |py| I [|py| <0(N.T)].
J

But |p;;| I [|ps;| <0(N,T)] <6(N,T), and hence, in view of (3) we have

mZaXZ|p;‘j—pij‘ <K9(N,T)m;cmx< > 1) =O0[0(N,T)my]. (42)

ijiﬁéo

Consider now the first term of (41), and following Bickel and Levina (2008a) note that

m?x;{pw—p;; < maxz{p,ﬂ\fﬂpw{ >0 (N, T), |p,| <O0(N,T)]
+maxz\p”\f[|pw{<e N.T), |pi| >0 (N, T)]
+m?xz\pw pii| I [|pijr] > 0 (N,T), |py| > 60(N,T)]

= A+B+jc. (43)
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Starting with C we have

C = max 3 |pyr = pig| 1 [[yr| > 0 (N.T), [py| > 0 (N, T)].
J

But I [|pyr| >0 (N.T), |py| >0 (N, T)] <I[|py|>60(N,T)] andalsoI( |p;|>0(N,T)|p;

0. Hence

C

IN

mi?x |pz’j7T - pz’j‘ m?XZ IHIOij‘ >0 (N,T)]
J

IN

mi?x |ﬁz‘j,T - pij‘ m?XZIHpij‘ >0 (N,T) |pij # 0]
J
+Ini?x|15ij,T - pij} m?XZIHsz‘ >0 (N,T) ’pij =0
J
= mi?x |f7ij,T - pij‘ m?‘XZIszj‘ >0(N,T) |pz’j # 0] < mi?x {Ibij,T - pij} my. (44)
J

However, using (A.3) of Lemma 3 in the online supplement and noting that ¢;(N) =
T0* (N, T), we have

3(s—2)—1
2

1 5 (V) (s—2) (N 7
sup Pr Hbij,T_pij} >9(N7Tﬂ < Ke s +0O | T = [ pK ] e ? K

)

v

+O ( (s— 1)/2) ’

where K, = sup,;; K (0;;) < K, and K (0;;) is defined by (12), with K (6;;) > 0. By the
Bonferroni inequality we have

L 2 . e
Pr [max [y — | > 0067)| < g HRY o (ners [SO0) T
i ’

v

+0O (NQTf(sfl)/2> ’

which can also be written as (noting that the middle term of the above is dominated by the
first term)

1 (V)
Pr [m.aX!f)@-jT — pi| > 9(N,T)} =0 (N2€ PR ) +O (N*T-C7D2) - (45)
i ’
1 op(N)
Also, using result (b) of Lemma 2 in the online supplement, e~ 2 " =0 (N -9/ K) , and
therefore
Pr [max |Dijr — pis| > 0 (N, T)] =0 (N*5) 4 O (N?*T-7D/2) | (46)
ij

Since T' = O(N?), then it follows that

mi?x‘ﬁijj ng‘ = 9(N )], (47)
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so long as § > 2K and d > 4/(s — 1). Using this result in (44) now yields
C=0,[my0(N,T)]. (48)
For A we have

A = maXZLo”T‘[prT’ >0(N,T), |p;,| <6(N,T)]

IA

ml.aXZlij Pl Lllpir > 6 (NT)- oy < 0 (N T)] a3 oy £ [loy] < 0 (N, T)]
J

S -/41 +A27

where

Ay =max 3> |py| I [|py| < (N, T)] = O[0(N.T)mx]. (49)
Also, for any € (0,1), we h;ve
A = m?x;\pm pii| I [|pijr] > 0 (N,T), |py| <6 (N,T)]
< m?x;\pm pii| I [|pyyr| > 0 (N, T), |py| <~ (N, T)]
+m?x%;\pw—pij|f [|pijr| >0 (N,T), 40 (N,T) < |py| <0(N,T)]

< Aj 4 Ay,
where
A = H%‘X }pij,T - pij’ m?XZ I Hﬁng - pij’ > (1 =)0 (N, T)} ) (50)
j
A = max |Pijr — pij] m?XZ[ [|pijr| > 0 (N, T), v (N, T) < |py| <O(N,T)]. (51)
j

But

Pr [mZaXZI [Pijr = pij| > A =10 (N, T)] > O] = Pr {mi?x \Pijr = pi| > (L=7)0 (N, T) |,
j

(52)
and by (45) we have,

1 (1-m2e2(N)

Pr | oy = | > (1= 07| = 0 (W) o (),
ij

Using a similar line of reasoning as above there exist 6 > 2K, /(1 —v)* and d > 4/(s — 1)
such that

Pr [max |Pijr — pi| > (1 =)0 (N, T)] — 0.
ij

Using this result in conjunction with (52) and (47) in (50) it follows that Ay, = O, [mn8 (N, T)].
For A5, we first note that

mZaXZI Hi)zJ,T| > Q(NvT)7 ’YQ(N,T) < ‘pm‘ < 6(N7T)}
J
< max I [40(N,T) < |py| <6(N,T)]
i

- m?xZI{[79 (N, T) < |py;| <0(N,T)] |p;; #0} < mu,
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which gives Ajp = O, [mn0 (N, T)], and together with the result for A;; we have A; =
O, [0 (N,T)my]. Overall using (49) we obtain

A= O,lmy0 (N, T)]. (53)
Finally, for B we have
B = maXZ’pU’[prﬂ <O(N,T), |py| >0(N,T)]
maxszw pii| I [|Pijr| <O (N,T), |piy| >0 (N,T)]

+max2‘ijT|IHp”T‘ <O (N,T), ‘pw‘ >0 (N, T)}

IN

= Bl+82.
But as before
B = maxP|piir = oyl {12l <0 (NT), o] > 6 (N, 7))
< max |y — ,ow|maxzf[\pw} <O (N,T), }pwl >0 (N, T)]
, |pij| = 0 (N, T)] |py; #0}

< my Ini?x|pij,T pzy‘ = mN‘9 (N, T)], (54)

= max ‘pij,T
ij

J| >0 (N,T)]

By = maXZ‘prU[

< max 27& ‘prl]prT‘ <90 NT)}

.7 pz]

S 0<N,T)m]\[

| <O(N,T),

Hence By = O, [0 (N, T) my], which in conjunction with (54) yields,
B=0,[0(N,T)mn]. (55)
Substituting results from (53), (55) and (48) in (43), and using the outcome with (42) in

(41) we obtain
my¢, (N) )

Hﬁ— RH — 0,10 (N, T)my] = O, ( =

as required. m

Proof of Theorem 2. Consider the squared Frobenius norm,

- 2
|R=R|| =S %000,
i
and recall that

Pijr — Pij = (pij,T - pij) I (‘ﬁf%T‘ > Cp(N)) — Pij [1 -1 (‘ﬁﬁng‘ > Cp<N>>] .
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Hence
. 2 . 2 R . 2
(pij,T - pij) = (pij,T - pij) I (‘\/T:Oij,T‘ > Cp(N)> + P?j [1 -1 (’\/Tpij,T‘ > Cp<N)>}

~2p35 (Pijr — pij) 1 (‘ﬁﬁ”T > Cp(N>> [1 -1 <‘ﬁi)z]T‘ > Cp(N)ﬂ :

However,
I (‘\/sz]T‘ > Cp(N)> [1 =1 (‘ﬁﬁng‘ > Cp(N))] =0,
and
-1 (‘\/Tpm( > cp(N))]2 -1 ()\/pr‘ > 6(N)) .
Therefore, we have
Z Z (lbij,T - pij)2 = Z E (bij,T - pij)2 I (‘ﬁme’ > Cp<N)>
i#j 7]
"‘Z;#JZP?J' [1 -1 (’ﬁpr‘ > Cp(N))]
= Z;#JZ (ﬁij,T - pij)2 I <’\/T:bij,T‘ > Cp(N))
A2 ([VThua] < o).

Taking expectations we have the following decomposition

E(HE_RHD :%&;E (Pijr — pij) =D+ E+F, (56)

where

D = ¥ p?jE [I (’ﬁf)ijj’ < ¢p(N) ’pij # 0)] ’

15,0570

E = ZZ E [(ﬁij,T — pij)2j (‘ﬁﬁijj‘ > cp(N) }pij e 0)] )
1#5,p;;70

F = ng:oE [f’?j,T] (‘ﬁf)iazif‘ > (V) |piy = 0)] ‘

Consider now the orders of the above three terms in turn, starting with D. We have p_;, =
min,; (‘pij s Pij F O) and p ., = max; (‘pij  Pij O) such that p_ .. < 1. Then

D < p2. . Nmy sup B [I (’ﬁf’ng‘ < ¢y(N) ‘pij =+ O)]
ij

= PoaxNmy sup Pr ()ﬁf)wT’ < ¢p(N) ’pij # O) ;
ij

and using (A.6) of Lemma 3 in the online supplement for |p,;| > ¢,(N)/ VT, we have

T(Pmin7T_1/QCP<JV>)2 2(s—2)—1

D < Kphu NmyKe o 140 (T35 |+ 0 (NmyT(-072),
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where K, = sup;; |K,(0;;)| < K. By assumption T7'/2¢,(N) = o(1), and since p,, > 0,
then the first term of the above will tend to zero with N and T — co. Therefore, D is of
order O(Nmy N~4=D/2) = O(N+/=ds=1)/2) "and D tends to zero as N — oo, for values of
d>2(1+9)/(s—1) and under (21), where by assumption 0 < ¢ < 1/2.

Consider now &. Recalling that p;; r = wijrzijr + p;jr we have the following decompo-
sition of £, £ = & + & + 2&3, where

& = ZZw?j’TE [z?j’TI (’ﬁf)”cﬁ’ > ¢,(N) ‘pij # 0)] ;

i1y 20
& = gp;ﬂ (piyr — p:5)" E [I (’\/Ti)m‘ > ¢p(N) |pi; # 0)] ,
& = ngéo (i = i) wisrE [Zz‘j,Tf (‘ﬁf’zﬂ‘ > ¢p(N) |pi; # 0)} :
Again, using (9) and (10),
Wir = KUEFH 2o (7)), (57)
(pir = )" = % +0 (17, (58)
(Pijr = pig) wisr = K$/2(0§{§/l§ n) 1o (T°7). (59)

& = XY wirE [Z%vT] (‘ﬁf’iﬂ) > &(N) |py; # 0)]

i#J}PiﬂéO
NmN
T

<
ij

sup K,(85) + O (T‘l)] sup I [0l (VT | > ()]0 #0)] .

Using (A.7) in Lemma 4 in the online supplement with r = 2, and noting that sup,; K,(0;;) <
K, then & = O (myN/T). Similarly, since F [I (‘\/Tﬁng‘ > ¢,(N) }pij #+ 0)} <1, we have

& = S (pijr— pij)QE [I (‘\/TﬁUT‘ > cp(N) |py # 0)}

i#japij #0

< Nmy [Ké(eij) +0 (T‘3)] —0 (NmN) .

T2 T2

Also, using (A.7) in Lemma 4 in the online supplement with r = 1, and using (59) we have

Es = D> (pij,T - pij) wijrE [Zij,TI <‘\/T1613T‘ > ¢y(N) |pij 7 0)}

177,035 70
sup;; Ko'?(8i) K (0;)) _ o (Nmy
o T3/2 |-

T3/2

IN

KNmy [ +0 (T7°7)
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Therefore, overall £ = O (mgN

). Consider now the following decomposition of F, in (56):

R O

- T [0 (Vs> 69 <)
1#£J,pi=
B 1 (V| 0, =0)
1FDPij=
+27EZ %pij?Twij’TE [zij’T] (’ﬁpijvT‘ > ¢p(N) ‘pij = 0)]
1FDPij=
- fl + fg + fg.
Consider F; and using (57) note that
N(N — -1 A
Rt T ) {SEPKU(%) +0 (Tl)] up 201 (|VThya| > (W) [0y = 0)].

Then using (A.8) in Lemma 4 of the online supplement with r = 2, we have

N(N — -1
F < K ( ;nN ) [SupKv(ezj)JﬁO(T—l)} X
ij
) 3(s—2)—1
2(N 2 (N
Ke 3t 40 [ 175" {CP(N)} | o (r)|
(pmax

where ¢, = sup;; ¢,; > 0. Now noting that sup,; |[K,(8;;)| = K, < oo, and my/N = o(1),
then

cp ()
FL = O (NQT e zwmax> + O (N7~ 571/2)

. <€_<2%1nax>ln]\,[ p< —2(2— d)wmax}) L0 (N2fd(sfl)/27d)_

Therefore, since limy_.o, ¢5(N)/In(N) = 2§ (see result (b) of Lemma 2 in the online supple-
ment), then 7y — 0, as N — o0, if 0 > (2 —d) Y., and d > 4/(s + 1). Similarly, using
(59), we have

Fo = 23 pigrE [[ (‘ﬁbﬁj‘ > M)l = OH

i7#7,p;;=0

< N(N—mN—l){supij K5 0) |pij:0} +0 (T~ 3)}supE[ <‘\/_pZJT)>Cp )‘pij:())].

T2
Now using (A.4) of Lemma 3 in the online supplement we have

NN =y = 1) [t + O(T )]
T2
3(s=2)-1

1) _ (s=2) |:6127(N)} 2 _%C%(N)
_— e

Fo < K

Ke *%ms +0 [T o | 1O (0|

(IDIIlaX
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where
then

= sup;; ¢,; < K, and 1;; is defined by (14). Once again, since my/N = o(1),

max

c2(N)

Fy=0 <62(1_d) lnN—é%nax) +0 (N2T—2T—(s—1)/2) :

and following similar arguments as above, it follows that 7, — 0 as N — oo, if § >
2(1 —d) @pax, and d > 4/(s + 3). Both of these conditions are met if § > (2 — d)¢,,., and
d>4/(s+ 1), since (2 — d)pmax > 2 (1 — d) Prax, and s > 0. Consider now F3 and, using
(9) and (10) evaluated at p;; = 0, note that

F3 = ;Z Pij,Twij,TE [Zij,T] (’ﬁﬁng‘ > Cp(N) ‘pij = 0)]
1#7,0;5=0
< ; Zo {pij,T‘ |wij,T| E |:|ZZJT| I ()ﬁf)ng’ > Cp(N) ‘pij = O)]
1) Pi =
Sup;; Wz‘ _ SUD;; /Pij _
< N(N — —1) | —L Lo (1772 —UNTY L O (T3?

X SI'IPE [|Zij’T| I (‘ﬁfbij»T‘ < CP(N) }pij = 0)} .
ij
Further using (A.8) in Lemma 4 of the online supplement with » = 1, we obtain (recall that
sup;; Wzy| < K and Sup;; \/gp_zj < K)

N(1 = mx/N — 1/N)
372 X
3(s—2)—1

(N . 2 2 c2(N
1 (V) T_(éEQ) |:Cp(N)} _1%W)

Fs < K

Ke 2%max + O € 2%max | +0O (T—(S—l)/2) :

(prnax

which establishes that F3 — 0, as N — o0, if § > (2 — d) . and d > 4/(s+ 1) (using the
same type of derivations as above). Therefore, overall 7 — 0, under the same conditions.
Using this result, together with the results obtained for D and £ above, in (56) we obtain

~ 2
E||R— R‘ o O (%N) , and (26) follows as required. Also by the Markov inequality

~ 2
T v ? R - R
— > = — > 2 ) < F o
Pr ( myN HR RHF - 6) Pr <mNN HR RHF = > - g2 — g2’

for some small € > 0. Hence,
T ~
v R—RH —0,(1),
mNN H F p( )

Proof of Theorem 3. Recall that T = c;N?, ¢4 > 0, and consider first the F PRy statistic
given by (31) which can be written equivalently as

ZZI< pijr| > T72¢,(N)|pi; = 0)

FPRy = |FPRy| = —Z TiCE—— . (60)

and result (27) follows. m
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Note that the elements of FPRy are either 0 or 1 and so |FPRy| = FPRy. Taking the
expectation of (60) we have

Z Z Pr (‘ﬁij,T| > T712¢,(N)|py; = 0)

1#] ~ —1/2 _
E|FPRy| = NN —my — 1) SS‘ZPPT(‘PU,H >T /CP(N)|IOij_O)'

Hence, using (A.4) in Lemma 3 of the online supplement we have

1 c2(N)

E‘FPRNl =0 (6_2 wmax> + 0 (T*(S*U/2) 7

where @, = sup,; ¢;; < K by Assumption 2 (see also Proposition 1). Hence, as N — oo
for any d > 0 (recalling that T = O(N?)), E|FPRy| — 0, noting that ¢(N) — oo, and
Omax > 0. Further, by the Markov inequality applied to |F'PRy| we have, for some n > 0,

E(|FPR _1W)
Pr(|FPRy| > n) < EUEPEND _ (e 2 «pmax> + O (T77172). (61)
U

It therefore follows that limy_,. Pr(|FPRy| > n) = 0, and FPRy 2 0as N — oo, for
any d > 0. For almost sure convergence by the Borel Cantelli lemma it suffices to show that

> Pr(|FPRy| > 1) < . (62)
N=1

From result (b) of Lemma 2 we have

2 (N)

eiéSOmax = O (Niﬂprjax) s (63)

and from (61) it follows that (for n > 0)

Pr(|FPRy| > 1) = O (N*ﬁ) + 0O (N~H-D/2) (64)

Hence (62) holds if > N “mex and S N~4s=D/2 converge, which is ensured if § > ¢,
N=1 N=1

and d > 2/(s — 1), which establishes that FPRy 3 0, as N — oo.
Consider now the TPRy statistic given by (30) and note that

Z¢ZI<ﬁij,T # 0, and Pij # 0)
> ZI(/%‘J' #0)

i#]

TPRy =

Hence -
Z Zl(pijj =0, and Pij #0)
Xy=1-TPRy = -2

NmN
Since | Xn| = Xy, then

.2 Pbr (‘ﬁz]T‘ < Tfl/Zcp(N”Pij £ 0)

E|Xy| = BE(Xy) = -2 < sup Pr (|pyr| < T72¢,(N)]py; #0) .
ij

NmN
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From (A.6) of Lemma 3 of the online supplement we further have that
ElXy| < sup Pr (‘ﬁng} < Tﬁl/ch(N”Pij # 0)
ij

T(pmin—T71/2Cp(N)>2 2(s—2)—1

< Ke o [1+0(T*F)] + o (1),

where p,;, = min;; (|pl-j| ,pi; 70) >0, and K, = sup;; K, (0;;) < K. Hence, since by as-
sumption T~2¢,(N) = o(1), and T = ¢4 N?, with c4,d > 0, it follows that limy .., F |Xy| =
0, as N — oo. Further, by the Markov inequality, Pr(|Xx| > 1) < @ for some 1 > 0,
and it follows that

E(|TPRy —1 ?(pmin =120y ()"

Pr(|TPRy — 1| > n) < ( v 1) O <e 2Ry +O (N~H==072)
n

(65)

Once again since by assumption 7'2c,(N) = o(1), d > 0, and p,;, > 0, then for any

n > 0, limy_o Pr(|]TPRy — 1| > n) = 0, and TPRy 2,1, as N — oo. For almost sure

convergence it is further required that
> Pr(|TPRy — 1| > 1) < 0. (66)
N=1

From (65) we have that

Ni’:;lpr(\TpRN _1>n) =0 <N§::1aN) L0 (Niijle) ,

where (setting ¢; = 1 to simplify the notations)

anN = e%(ﬁmin_N_d/%”(N))i and by = N—Us=1/2,

o0 oo

Hence, for (66) to hold, the series >  ay and > by must converge. Using the direct
N=1 N=1

comparison test for convergence of infinite series, this will be the case if

N—d(s—l)/2 S ]\/'—l—e7 (67)

and
_Nd

TR (Pin =T 2, (N))" o -1 (68)

for all N > Ny, where N, is some finite positive integer, since for € > 0, we have > N~1*¢ <
N=1
K. Condition (68) can be written equivalently as

1

_ 2 _
s (un = 1726, (N)” > (14 T In(),

which is satisfied since by assumption N~%2¢,(N) = T-Y/2¢,(N) = o(1), d > 0, pym > 0,
and K is a bounded positive constant. Hence, under the conditions of the theorem it follows
that TPRy “3 1 as N — oo, if d > 2/(s — 1).
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Finally, consider the FFDR statistic defined by (32), and note that

N—mN—l
my

FDRy = < ) FPRy.

Now noting that (N+ﬁ = O(N'7?), and using (64) we have
E|FDRy| = O (Nl’ﬁN_ﬁ) L O (NN

Hence, limy_,oo £ |FDRy| =0, as N — 00, if 6 > (1 — )@ and d > 2(1 —19) /(s — 1).
Also, applying Markov inequality to |F'DRy|, for some 1 > 0 we have

E(|FDR 5
Pr(|[FDRy| > 1) < E(IFDRy|) -0 (Nl—ﬂN (pnfax> L0 (Nl—ﬁN—d(s—l)/Q) ‘ (69)
Ui
Almost sure convergence requires
> Pr(|[FDRy| > n) < oo, (70)
N=1

and using (69) this follows if § > (2 — ¥)¢,,., and d > 2(2 — ) /(s — 1), then FDRy “% 1
as N — 00. m
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Supplementary Appendix A
Technical Lemmas

A.1 Statement of technical lemmas

We begin by stating a number of technical lemmas that are needed for the proofs of the main
results.

Lemma 1 Consider the distribution function of a standard normal variate defined by
u2
O(x) = (ZW)_l/foooe_Tdu.

Then, for x >0

1 2
O(—x)=1-—P(x) < §exp(—§). (A1)

Lemma 2 Consider the critical value function®

cp(N) = &2 (1 . %) ,

where @71 (.) is the inverse function of the cumulative standard normal distribution, 0 < p <
1, f(N) = csN°, where cs and § are finite positive constants, and suppose there exists finite
Ny such that for all N > Ny

b

Then for 0 < s < 1, we have
(@) (V) = O (I (V)]*);
(b) exp [—%0123 (N) /2] =& (N-), limy_c (N)/In(N) = 26;
(c) if 6 > 1/, then N exp [—»c2(N) /2] — 0, as N — .

Lemma 3 Consider the sample correlation coefficient, p;;r, defined by (4 ), and suppose
that Assumptions 1 and 2 hold, T = cqN?, with cq > 0. Then, there exists Ny such that for
all N > Ny, 7

3(s—2)—1
_1 %M -2 [ A(N) 2 19w
Pr [|pijr — piy| > T2, (N)] < Ke 500 40 (T 7 {Ki(@i]) e %0y
+O (T~6D/2) (A.3)

®We would like to thank George Kapetanios for his help with the proof of (b) and (c) of this Lemma.

"To simplify the notation we have dropped the lower order terms e * V% i) VT and e_%, as they do
not affect the results, and can be absorbed in the remainder order term.



and

_15M) o [A(N)] 2 15w
Pr[|pyn| > T2, (N)lpy; = 0] < Ke **5 +0|T7% lﬁ e %0
+O (T~=D/2) (A.4)

where K,(05;) is given by (12), ¢; = E (yay% |p;; =0), and

cp(N) = & (1 -5 ffN)) >0, (A.5)

with 0 < p < 1, and f(N) = csN° where c; and & are finite positive constants. Further, if
pi;| > ¢,(N)/VT then we have

T( pij —T71/2(:p(N))2

piir| ST P (N)lpy #0] < Ke M@ [1 +0 (be)_l)]
+0 (777172 (A.6)

Pr[

Lemma 4 Consider the standardised sample correlation coefficient
. —1/2 . .
zijr = [Var (pyr)] Pijr = E (Pijr)]
where p;; 7 is defined by (4) and E (p;;.1) and Var (p;;) > 0 are given by (9) and (10), re-
spectively. Suppose that Assumptions 1 and 2 hold, c,(N) = &~ (1 — %) , and condition

(A.2) holds. Also let T = cyN?, with cq > 0. Then, there exists Ny such that for N > Ny,
and for r > 0,

swp B (20" T (|VThyyr| > a(N) [y #0)] < K, (A7)
ij
and
200 N
1% s—2
sup E [|Zij,T|T[ (‘ﬁﬁijf‘ > ¢p(N) |pi; = 0)] < Ke #vmm +0 [T [p— e
i ¥max

1O (T2
where Py, = SUP;; 0y, ;5 18 defined by (13), and s > 3 is defined by Assumption 2.
Lemma 5 Consider the data generating process
y: = Pu,

where y; and u; are N x 1 vectors of random variables, and P is an N x N matriz of fixed
constants, such that PP’ = R, where R is a correlation matriz. Suppose that u, follows a
multivariate t-distribution with v degrees of freedom generated as

v—2 1/2
u = 2 €ty
Xv,t

2

1
2

2 (N)

¥$max

(A.8)



where €y = (€14, €21, - - -, ent) ~ TIDN(0,1y), and X3, is a chi-squared random variate with
v > 4 degrees of freedom distributed independently of €,. Then we have that

(v —2) [(pip:)? + (Pipy)’]
(v—4) ’

E(yiy;:) =
where pj is the i row of P. In the case where P =1y, E(yjy3,) = (v —2)/(v —4) and

E(%’%tyjt) = E(yjztyit) = 0.

Lemma 6 Fat-tailed shocks do not necessarily generate £ (yftyf-t) > 1.

A.2 Proofs of lemmas for the MT estimator

Proof of Lemma 1. Using results in Chiani et al. (2003) - eq. (5), we have

erf c(x ~du < exp(—x?), (A.9)

2 oo
)= ﬁfm €
where erf ¢(z) is the complement of the erf(z) error function defined by

erf(x foxe_“zdu. (A.10)

2
)=
But

1 - @) = (2n) V2 [P 5 du = %erfc (%> |

and using (A.9) we have

1 T 1 z \? 1 72
]
Proof of Lemma 2. First note that

O (2) =V2erf (22— 1), z€(0,1),

where ® () is cumulative distribution function of a standard normal variate, and erf(z) func-
tion is defined by (A.10). Consider now the inverse complementary error function erfc=!(z)
given by

erf ¢ (1 — x) = erf ().

Using results in Chiani et al. (2003) on p.842, we have

erf ¢ !(z) < /—In(z).



Applying the above results to ¢,(N) we have

@) = o7 (1 - 2pr>)

(
e o3
— 2erf! [1 . L} = V2erfc! [L]

f(N) f(N)
< 3 _m[f(]]?\[) = /2[In f(N) — In(p)].

Therefore, for f(N) = csN° we have
E(N) < 2[5In(N) — In(p)] = O [ln(N)]

which establishes part (a).
Further, by Proposition 24 of Dominici (2003) we have that
1/2

1
A}im cp(N) /LW =1,

o[- at) 1T

where LW denotes the Lambert T function which satisfies limy_,oo LW (N)/{In(N) — In [In(N)]} =
1 as N — oo. We note that limy_.o, In(N)/{In(N) —In[In(N)]} =1 as N — 00. So

- oo >—112}1/2 .

2f(N)
N—oo \@f(N) 1/2
{om ()}

Hence, for any 0 < s < 1,

lim °XP [—%cg(N /2] = lim exp [_%0129(]\0/2] =1,as N — o0
e AP Y N ] e ,

exp |—

and substituting cs N° for f (N) yields,

e [—5c2(N) /2] 27/
im = :
N—oo Cg%Nf(s% W%/Zp%

(A.11)

It follows from (A.11) that exp [—s«c2 (N) /2] = © (N°*), as required. From this result it
also follows that [—scc2 (N) /2] = © (—65¢In N), which in turn yields limy_.o, ¢2(N)/In(N) =
26. This completes the proof of part (b). Finally, it readily follows from (b) that N exp [—sc2 (N) /2] =



© (N'7°%), and therefore N exp [—%cﬁ (N) /2] — 0 when 0 > 1/5¢, as required for the proof
of part (¢). m

Proof of Lemma 3. We first note that
Pr [ Pijr — Pij| > T_l/Qcp(N)

= Pr[pyr—py > T7'2¢,(N)

= Pr [,%,T — Pij > T_1/20p<N)

and

Pijr — Pij = WijTZiT + (pij,T - pij) )
where z;; 7 is the standardised sample correlation coefficient defined by (15), p;;+ = E (ﬁiij)
and w, . = Var (p;; ) > 0 are given by (9) and (10), respectively. Hence

Pr [bij,T - Pij > T_l/ch(N)} = Pr [Wij,TzixT + (pij,T - pij) > T_l/Qcp(N)]

= Pr (Zij,T > aij,T) s

where s
T Pey(N) = (pijr — pij)
Qi 7 = .
Wij,T
Similarly,
Pr [f)ij,T — Pi; < _Tfl/ch(N)] =Pr (Zz‘j,T < _bij,T) )
where

T_l/QCp(N) + (pij,T - pij)

WijT

bijr =

But using (9) and (10) we have (note that by assumption sup; | Ky, (6;;)|and supinvl/Q(Bij) <
K)
T=12¢,(N) = £2l00) L O(T=2)  ¢,(N)

P T _ +0(T7'?%), A.13
" VTK,(0;;) + O (T72) K:%(0,) ( ) A
and / K (63;)
T,]_ 2 N m \Yij O T*Q
byp = LGN+ 2RO o) b qany a

VT 'K, (0:;)+ O (T2) N Kvl/z(eij)

Using the above results in (A.12) we now have

R cp(N) B
Pr[|pir — py| >0 (N, T)] = Pr (zij,T > [(;2—(0@) +0 (T 1/2))
—¢(N) -
+Pr | zijr < — o (T |,
r (Z]T K:%(03) ( )>

where 0 (N, T) = T~/2¢,(N). Result (A.3) now follows using (17) and (18) with ar replaced

K cp(N)

by (A.13), and ignoring the higher order terms e IV @i and e~ ¥ that arise from squaring

5



ar = K{1/2(Hij)cp(]\/) +0O (T~'/?). Result (A.4) can be obtained as a special case by setting
p;; = 0. Finally, to establish (A.6), using similar line of reasoning as above, we first note
that

\/_p’tj p( )

Pr |7 )piy #0] = Pr (zmg o) +O(T‘1/2)> (A.15)
—Pr (zz-j,T <ot Yoy | o (T‘1/2)>
K(655)
= Pr (Zz‘j,T < YT ks _1/?_1/2%(]\[)} +0 (T‘1/2)> .
K'7(055)

Suppose that p;; > T7/2¢,(N) > 0, then using (17) we have (again ignoring higher order
terms in T1)

T(pgj—1"1/? c,[,(N))2
o ST (Nl #0] < Ke T 140 (T ) |10 [T,

(A.16)
A similar result follows when p;; < 0. In this case we consider writing (A.15) equivalently as

\/_p’L_] p( )

Pr[A

Pr||p 2 (N)|p;; 0] = 1—Pr| zijr > — +0 (T2
| Nl £ (s> -t o
+
—1+Pr (Zij,T > _ ( 3/2 \/_Iol] O(T—1/2)>
K.7(055)

T[—p.. +T 2 (N
< Pr (zmT - \/_[ Pij 1“/‘2 Cp( )} L0 (T_1/2)) 7
K""(0:)

where by assumption —p;; + T~ /2¢,(N) > 0. Now applying (18) to the right hand side of
the above yields the outcome in (A.16) with p,; replaced by —p;; Thus the desired result
(A.6) is established for positive and negative values of p;; such that |p;;| — T/%¢,(N) > 0.
n

Proof of Lemma 4. We first note that since inf;; Var (pij,T) > 0, and p;;  is a correlation
coefficient, }[)ijﬂ < 1, there exists Ty such that for all T' > T

Pijer| + B (Piir)| <osp | —1 | <k

Var (ﬁi]-’T) i Var (ﬁij,T)

Hence, F |z;;r|” < K for any finite . Also, by the Cauchy—Schwarz inequality

b [|Zij,T|rI (‘ﬁﬁiﬂ’ > ¢(N) |pi; # Oﬂ < [EB(afr )] {E [I (‘ﬁﬁiﬂ’ > a(N)|py # 0)] }1/2
= [B 2] Pr (|VThya| > (V) [y #0)
< K



which establishes (A.7), as required. Similarly,
E [zl T ([VTpyr| > (W) [y, = 0)] < K Pr (|VTy0| > (W) [, = 0)

and using result (A.4) of Lemma 3, we have

3(s—2)—1
_ 150 o [A(N)] 2 _15W
E [|Zij,T|rI (‘\/Tﬁiﬂ‘ > ¢,(N) |pi; = 0)} < Ke?e 0|7 [M e g
' Pij

which establishes (A.8). m

Proof of Lemma 5. First we note that

1 1 1 2
E( 2) = ,Var( 2>: 5
Xv.t v—2 Xt (v—=2)"(v—4)

s (Xé,t)Q T (v— 2)22(V_4) * (Vig)z =G ;)2_(3_4). (A.17)

B =8| (Y57 )eet] = £ (57 Bleed = 1n

2
v Xv,t

Then

and
E(y:) =0, E (y:y,) = PP’ =R.
It is clear that y; has mean zero and a unit variance. Denote the i row of P by p; and

1/2
note that y; = piu; = <V§2> piet, and hence

(V 5 2>2 (pier)” (p}fst)zl :

2
Xv,t

1(2,2) = E(yiys) = E

and since €; and szz,t are distributed independently using (A.17) we have

(v—2)°
(v—2)°(v—14)

E(yayi) = E[(ejAier) (e1Aje0)]

where A; = p;p;. But since e; ~ N(0,1Iy), using results in Magnus (1978) we have
E[(eiAe;) (e;Aje)] = tr(pip;)tr (PjP;) +1ir (pz-pépjpé-)
= (pip)” + (pipy)°

Hence ) )
(v—2) [(pjp:)° + (Pip))’]
(v—4)

E(yiys) =




When P is an identity matrix then pjp; = 1 and pjp; = 0, and hence E(y;y5,) = (v—2)/(v—4).
Also
v—9 3/2
( X%,t )

Proof of Lemma 6. Consider the data generating process y; = Pu; where the elements
of uy = (uyy,usy,...,unt)’, uy, are generated as a standardized independent chi-squared
distribution with v; degrees of freedom, namely

E(yiyu) = E

E [(€2Ai€t) p;Et:| =0.

X?t(Vi) — Vi

AV 2Vi

Then it is clear that E(uy) = 0, E(uj,) = 1, as well as E(uju?,) = E(uj,)E(u?,) = 1, and
E(uu)) = Iy. Let p! be the i row of P and note that

Wi = , for all 7 and ¢.

E(yays) = Pl (uy)p; =pip; = Pij

I Y 2
p;Pi = Zpir =1
r=1

Also
E(yiyh) = E|[(piuuip;) (pjuuip;)]
= Z Z Z Zpirpir’pjspjs’E(urtur’tustus’t)-
But
E(upupugugy) = 0ifr#1 or s # &
= E(iu?)=1ifr=7"and s = s,
and hence

N 2
E ylty_]t - Z prp]s - (Z p?r) =1
r=1

Therefore, fat-tailed shocks do not necessarily generate p,;;(2,2) = E (yfty?t) >1. m

Supplementary Appendix B

An overview of key regularisation techniques

Here we provide an overview of three main covariance estimators proposed in the literature
which we use in our Monte Carlo experiments for comparative analysis, namely the thresh-
olding methods of Bickel and Levina (2008a), and Cai and Liu (2011), and the shrinkage
approach of Ledoit and Wolf (2004).



B.1 Bickel-Levina (BL) thresholding

The method developed by Bickel and Levina (2008a) - BL - employs ‘universal’ thresholding
of the sample covariance matrix ¥ = (6;5), 4,j = 1,2,..., N. Under this approach X is
required to be sparse as they define on p. 2580. The BL thresholding estimator is given by

In (N)
T

flBL,C = (61'3‘] [|5ij| >C

>,@':1,2,...,N—1, j=1i+1,i+2,...,N (B.18)

where [ (.) is an indicator function and C' is a positive constant which is unknown. The
choice of thresholding function - I (.) - implies that (B.18) implements ‘hard’ thresholding.

In(N)

The consistency rate of the BL estimator is my4/ == under the spectral norm of the error

matrix (f] BLC — E). The potential computational burden in the implementation of this

approach is the estimation of the thresholding parameter, C'. This is usually calibrated
by a separate cross-validation (CV) procedure. The quality of the performance of the BL
estimator is rooted in the specification chosen for the implementation of CV.® Details of the
BL cross-validation procedure are given in Section B.3.

As argued by BL, thresholding maintains the symmetry of 3 but does not ensure positive
definiteness of ¥, ~ in finite samples. BL show that their threshold estimator is positive
definite if 7 B B

HZBL,C - ZBLOH < e and Ain () > ¢, (B.19)

where ||.|| is the spectral or operator norm and e is a small positive constant. This condition
is not met unless T is sufficiently large relative to N. ‘Universal’ thresholding on ¥ performs
best when the units z,, ¢ = 1,2,...,N, t = 1,2,...,T are assumed homoskedastic (i.e.

0'11:(722:...20']\[]\]).

B.2 Cai and Liu (CL) thresholding

Cai and Liu (2011) - CL - proposed an improved version of the BL approach by incorporating
the unit specific variances in their ‘adaptive’ thresholding procedure. In this way, unlike
‘universal’ thresholding on g], their estimator is robust to heteroscedasticity. Specifically,
the thresholding estimator 3¢y, ¢ is defined as

Sero = (6ise, |65 > 750), i=1,2,...,N~1, j=i+1,i+2,...,N (B.20)

where 7;; > 0 is an entry-dependent adaptive threshold such that 7;; = \/@iij, with

0, = T7! Z?zl(mitaﬁjt — 64)* and wy = Cy/In(N) /T, for some constant C > 0. CL
implement their approach using the general thresholding function s, (.) rather than I (.),
but point out that all their theoretical results continue to hold for the hard thresholding
estimator. The consistency rate of the CL estimator is Comy+/In (N) /T under the spectral

norm of the error matrix (f]c LC — 2). The parameter C' can be fixed to a constant implied

8Fang et al. (2016) provide useful guidelines regarding the specification of various parameters used in
cross-validation through an extensive simulation study.



by theory (C' = 2 in CL) or chosen via cross-validation. Details of the CL cross-validation
procedure are provided in Section B.3.

_ As with the BL estimator, thresholding in itself does not ensure positive definiteness of
Y16+ In light of condition (B.19), Fan et al. (2013) - FLM - extend the CL approach and
propose setting a lower bound on the cross-validation grid when searching for C' such that

the minimum eigenvalue of their threshold estimator is positive, Ay (Z FLM C*) > 0. This

idea originated from Fryzlewicz (2013). Further details of this procedure can be found in
Section B.3. We apply this extension to both BL and CL procedures (see Section B.3 for
the relevant expressions).

B.3 Cross-validation
We perform a grid search for the choice of C over a specified range: C' = {c¢: Cppin < ¢ < Chiax }-

/| T _ ~ | /T
i and Chax = mi?xaw‘ x5 and impose
Cmin)

increments of (C“’% In CL cross-validation, we set Cpin = 0 and Cpax = 4, and im-
pose increments of ¢/N for ¢ = 1. In each point of the respective ranges, ¢, we use x;,

In the BL procedure, we set Cpi, =

min 67;j
ij

i=1,2,...,N,t=1,2,...,T and select the N x 1 column vectors z; = (z1;, Tas, ..., 7n¢)

t =1,2,...,T which we randomly reshuffle over the ¢-dimension. This gives rise to a new
!/

set of N x 1 column vectors z\*) = (xgt), a5 ,ng,l) for the first shuffle s = 1. We repeat

this reshuffling S times in total where we set S = 50. We consider this to be sufficiently
large (FLM suggested S = 20 while BL recommended S = 100 - see also Fang et al. (2016)).

In each shuffle s = 1,2,..., S, we divide ) = (mf), ccg ), ey zcg‘f)> into two subsamples of

size N x T7 and N x Ty, where To, = T — Tj. A theoretically ‘justified’ split suggested in

BL is given by T} =T (1 — ﬁ) and Tp = % In our simulation study we set 1] = %
and Tp = L. Let f]is) = (a—gi’j) with elements 053] =T Wy jt , and Z ( gsz)j)
with elements a—gj?j =T, Zt:Tﬁl xff)xgt), 1,7 = 1,2,..., N, denote the sample covariance

matrices generated using 77 and T3 respectively, for each shuffle s. We threshold i:f) as in
(B.18), (B.20) using I (.) as the thresholding function, where for CL both #,; and wy are

adjusted to

() s ~ (s
“:—z (22l — 612,

and
In (N
wr, () =¢ ;1 )
Then (B.20) becomes
50 (0) = (531 [542) 2 )

for each ¢, where

10



and 9
CL,

and wr, (c¢) are defined above. The following expression is computed for BL and

S
-5 [E @2

lz]

2

o (B.21)

for each ¢ and

~ N

C=arg min G(c). (B.22)

CminSCSCmax
If several values of ¢ attain the minimum of (B.22), then C' is chosen to be the smallest

one. The final estimator of the covariance matrix is then given by ié. The thresholding

approach does not necessarily ensure that the resultant estimate, X4, is positive definite.
To ensure that the threshold estimator is positive definite Fan et al. (2013) propose setting

a lower bound on the cross-validation grid for the search of C' such that Ay, <§C> > 0 - see
Fryzlewicz (2013). Therefore, for BL and CL we modify (B.22) so that

A A

C*=arg min  G(c), (B.23)

Cpate<c<Cmax

where C)q is the lowest ¢ such that Apin <§Jcp d) > (0 and € is a small positive constant. We do

not conduct thresholding on the diagonal elements of the covariance matrices which remain
in tact.

B.4 Ledoit and Wolf (LW) shrinkage

Ledoit and Wolf (2004) - LW - considered a shrinkage estimator for regularisation which is
based on a linear combination of the sample covariance matrix, 3, and an identity matrix
Iy, and provide formulae for the appropriate weights. The LW shrinkage is expressed as

Sow = Iy + P35, (B.24)
with the estimated weights given by

p1 = me%“/d%, pg = a%/d%

where
mr = N 'tr <2> , d7¥ = N"1tr (22> —m3,
a3 = dr— b2, b% = min(b%, d¥),
and
T T

2, —

T
_ 1 1 2

2 _

=N | (1) (81))~ 77 2 (#1800 (57).

and noting that ZtT:l tr (m;f]mt) Zt L tr <§] Zt L T ) th 1 b ( ), we have

T N 2
=5 1 .9 1 -2
vy (L) - e (E).

t=1 i=1

11



with {i:t = (l'.lt7 .I"Qh e al.'Nt), and jjit = (xit — fi).g

- -1
Y w is positive definite by construction. Thus, the inverse X, exists and is well
conditioned.

Supplementary Appendix C
Shrinkage on MT estimator (S-MT)

Recall the shrinkage on the multiple testing estimator (S-MT') expression displayed in Sec-
tion 3.1, B B
Rg .y (§) = &I + (1 = &Ry,

where the NV x N identity matrix I is set as benchmark target, the shrinkage parameter
is denoted by & € (§,,1], and &, is the minimum value of ¢ that produces a non-singular
Rg.1i7(€,) matrix. Note that shrinkage is deliberately implemented on the correlation matrix
R a7 Tather than on > ymr- Inthis way we ensure that no shrinkage is applied to the variances.
Further, shrinkage is applied to the non-zero elements of Rysr, and as a result the shrinkage
estimator, Rgs.y7, also consistently recovers the support of R, since it has the same support
recovery property as Ryr. With regard to the calibration of the shrinkage parameter, &, we
solve the following optimisation problem

2

Ry —Rg ()

£ =arg min

€otesé<l ’

F
where € is a small positive constant, and Ry is a reference invertible correlation matrix. Let
~—1 ~
A = R;" and B (£) = Rg_,;7(€). Note that since Ry and Ry are symmetric
1 =-1 2
| R =R (@) = tr (4%) = 26{AB (€)] + 6B (¢)]

The first order condition for the above optimisation problem is given by

2

) HR(;I—RE-lMT(S)HF . <AaB (g)) Can (B © 8B_(£)) |

o¢ 0& 03
where

OB == > R

% = —RS_lMT(Q <IN - RMT) RS—lMT(g)

= —B(9) (Iv~Rur) B(9).
Hence, £* is obtained as the solution of
f(©) = —tr [(A=B(©) B (¢) (Lv — Rur ) B(9)] = 0.

9Note that LW scale the Frobenius norm by 1/N, and use HAH; =tr(A’A)/N. See Definition 1 of Ledoit
and Wolf (2004) (p. 376). Here we use the standard notation for this norm.

12



where f(&) is an analytic differentiable function of £ for values of £ close to unity, such that
B (&) exists.
The resulting Rg pr (£) is guaranteed to be positive definite since

Amin [ﬁs-MT (f)] = & min (In) + (1 = &) Amin (ﬁMT) > 0,

. €_>\min (R]MT)
for any € € [£, 1], where & = max (m O)'

C.1 Derivation of S-MT shrinkage parameter

We need to solve f(£) =0 for £ such that f(£*) = 0 for a given choice of Ry.!"
Abstracting from the subscripts, note that

f1) = —tr [(R7-Iy) (In - R},
or
F) = —tr [—R_1R+R_1—IN+1§,:|
= ftr (R_1ﬁ> —tr (R’l) ,
which is generally non-zero. Also, £ = 0 is ruled out, since ﬁS_MT(O) = R need not be

non-singular.
Thus we need to assess whether f(£) = 0 has a solution in the range £, < £ < 1, where

&, is the minimum value of £ such that Rg y7(€,) is non-singular. First, we can compute &,
by implementing naive shrinkage as an initial estimate:

ﬁS—MT(fo) = foIN + (1 - fo)ﬁ-

The shrinkage parameter &, € [0, 1] is given by

€ — Amin (ﬁ)
o (B)

where in our simulation study we set ¢ = 0.01. Here, Ay, (A) stands for the minimum

&p = max ,

eigenvalue of matrix A. If R is already positive definite and A, (ﬁ) > 0, then &, is
automatically set to zero. Conversely, if Ay, (ﬁ) <0, then &, is set to the smallest possible

value that ensures positivity of Ay, (ﬁg MT(fo))-

Second, we implement the optimisation procedure. In our simulation study we employ a
grid search for £* = {£: £, + € < & < 1} with increments of 0.005. The final £* is given by

¢ = argmin [FOP.

0The code for computing Rg of our choice is available upon request (see Section C.2).
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C.2 Specification of reference matrix R

Implementation of the above procedure requires the use of a suitable reference matrix Ry.
Our experimentations suggested that the shrinkage estimator of Ledoit and Wolf (2004) -
LW - applied to the correlation matrix is likely to work well in practice, and is to be recom-
mended. Schifer and Strimmer (2005) consider LW shrinkage on the correlation matrix. In
our application we also take account of the small sample bias of the correlation coefficients
in what follows. We set as reference matrix Rq the shrinkage estimator of LW applied to the
sample correlation matrix:

A~ A~

Ry =0y + (1 -0)R,

with shrinkage parameter # € [0,1], and R = (Pij)- The optimal value of the shrinkage
parameter that minimizes the expectation of the squared Frobenius norm of the error of
estimating R by Rg:

E Hf{O - RHQF => 2 F (ﬁzg - pij)2 + QQZ?&ZE (ﬁ?g) —20%>F [f)ij (Ibm - pij)] , (C.25)

i#] i#]
is given by
Z}:E [f)ij (f)z‘j - Pz’j)] Z}:E (,?)z-jpij)
[ . =1-Z R C.26
>3 (72) > E (7)) (€20
i#£j i#£]
with

A [ pi; (1=0%;)
Z;;:Pij [pij - %}
7]

. A piy (1-02)1%
IS S -2+ X [y - 25

i#] i#]

Note that limT_,oo(é*) = 0 for any N. However, in small samples values of 6" can be obtained
that fall outside the range [0,1]. To avoid such cases, if 0" < 0 then 0 is set to 0, and if

~

§ > 1litissettol,orf = max((),min(l,@*)).
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