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Motivation
Linear factor models intensively used in macroeconomics do
not capture nonlinearities arising during deep recessions –
financial crisis 2008/2009 – or binding constraints – ZLB.

Dynamic Factor Model

We propose a nonlinear dynamic factor model featuring a state
equation pruned to the second order based on Andreasen et al.
(2013) and a general nonlinear measurement equation.

Implementation and Applications
We use Uscented Kalman Filter and Particle Filter for Maximum
Likelihood estimation of the model on US key macroeconomic
indicators and cross-country panel of CDS spreads data.

Model

General model:
Measurement yt = G(ft) + ηεt
Factor motion ft = H(ft−1) + σνt.

Here, εt and νt are iid N(0, I ). Using a generic nonlinear factor motion may lead to

1. Explosive dynamics

2. Divergence of filter

To fix this, we use pruning (Andreasen et al., 2013) – it allows to limit higher order effects.
The model is – up to second-order effects:
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At this point, we don’t impose any restrictions on G(·). Furthermore, our approach can be
easily extended to more factors, alternative distributional forms – heteroskedasticity, kurtosis,
skewness.

Unscented Kalman Filter – UKF

Approach: Use unscented transform for approximating filtering distributions. UKF forms a
Gaussian approximation to the filtering distribution:

p(ft|Y1:t) ≈ N(ft|mt,Pt).

Here, mt and Pt are mean and covariance. UKF captures first and second moments of the
resulting random variables using sigma points.
Algorithm from Särkkä (2013):

� Prediction

1. Given mt−1 and Pt−1, form sigma points:
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for i = 1, . . . , n,. Here λ = α2(n + t)− n (n – dimensionality of the state), m is
filtered state’s (factor’s) mean, P – filtered state’s covariance matrix, t denotes period.

2. Propagate sigma points through the dynamic model:
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3. Compute predicted mean m−t and predicted covariance P−t
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� Update step

1. Form the sigma points:
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2. Propagate sigma points through the measurement model:
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)
, i = 0, . . . , 2n

3. Compute predicted mean µt, predicted covariance of the measurement St:
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Advantage: Computationally fast

Disadvantage: Captures only 1st two moments of the distribution

Implementation: Maximum likelihood estimation based on Särkkä (2013) Matlab package

Particle Filter – PF

Approach: generates distribution of particles, weights each particle according to its likelihood,
resamples to avoid degeneration and propagates through nonlinear system.
Bootstrap filter version from Särkkä (2013):

� Prediction

Given particles and weights at t − 1:
{
x i
t−1,W

i
t−1

}
1. Draw a new particle x (i)

t for each point in the sample set {x (i)
t−1 : i = 1, . . . ,N} from
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2. Calculate weights:

ω
(i)
t = p(yt|x (i)

t ), i = 1, . . . ,N

� Update

1. Define normalized weights: W̃ (i)
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2. Resample from multinomial distribution
{
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}
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Approximate state distribution and likelihood are:
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Advantage: Tracks the whole distribution

Disadvantage: Computationally and coding-wise heavy

Implementation: Maximum likelihood estimation using CUDA/C++

US Macroeconomic indicators with UKF

Measurement equation: [
Rt

yt

]
=

[
max(grft,−µr

σr
)

G × ft

]
+ ηεt

where εt ∼ iidN(0, I), f follows (1) and νt ∼ iidN(0, 1), R is Fed funds rate, yt

includes hourly earnings∗ , spread between Baa corporate bond yield and 10-year Treasury,
CPI inflation∗, industrial production index∗, spread between 10-Year Treasury Constant
Maturity and 2-Year Treasury Constant Maturity, and weekly hours worked, all the series
obtained from FRED.

Monthly data covering 1985:1 - 2017:6. Series marked with ∗ were used in log differences
xt = ln(x̃t)− ln(x̃t−1), where x̃ are original non-stationary series, and all series were
standardized: yt = xt−x̄

σ(x)
, where xt are original or log-differentiated series, x̄ denotes average

and σ(x) – standard error. UKF parameters: n = 2 (5 sigma points),
α = 1, β = 0, and κ = 1.

Figure 1. Filtered factor in the estimated model and Output Gap. Data source: FRED, CBO, NBER

Results: The resulting nonlinear economic activity index tracks closely the CBO’s output gap.

European CDS spreads with PF

Measurement equation:

yt = G × ft + ηεt,

where yt are CDS spreads, G is a 5x1 vector, εt ∼ iidN(0, I) and factor evolves following
(1) . We use 5-year USD CDS end of the month spreads obtained from Thomson Reuters
Datastream for Germany, Italy, Ireland, France, and Portugal. Sample covers: 2006:10 -
2018:2. All the series were standardized: yt = xt−x̄

σ(x)
, where xt are original series, x̄ denotes

average and σ(x) – standard error. We use 10, 000 particles.

Figure 2. Factor and its decomposition in standardized EU CDS spread series. Data source: Thomson Reuters
Datastream
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Results: We uncover a common factor that reflects common default risk within the sample
of European economies. “Second-order” component of this factor demonstrates significant
fluctuations in the period of the sovereign debt crisis, just moderately varying in the rest of
the available time interval.
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