Intro	Data	Predictive model	Results	Out-of-sample	Conclusion
0	000	00	00 00	0	0

Identifying excessive credit growth and leverage

Lucia Alessi and Carsten Detken

European Central Bank

MaRs conference Frankfurt am Main, 23-24 June 2014

Intro

Pred oo Resul

Out-of-sample

Conclusion

Aim of the paper

Early warning indicators for macropru instruments targeting credit

ntro	Data	
)	•00	

Predictive	model
00	
0	

Results

Out-of-sample o Conclusion o

Target variable

Systemic banking crises and 'near misses'

Banking crises dataset by Expert Group:

- based on the HoR database compiled by the MaRs
- amended in order to include:
 - 1. *only* systemic banking crises associated with a domestic credit/financial cycle
 - periods in which in the absence of policy action or of an external event that dampened the credit cycle a crisis as in
 would likely have occurred

Target variable

Early warning indicators

- Credit related indicators, based on total credit and bank credit, credit to households and non-financial corporations, the debt service ratio and public debt
- Real estate indicators based on residential property prices, incl. valuation measures
- Market-based indicators such as the short and long term interest rates and equity prices
- Macroeconomic variables such as real GDP growth, M3, real effective exchange rate, current account

Intro	Data	Predictive model	Results	Out-of-sample	Conclusio
0	000	0	00	0	0

Recursive partitioning

$$GINI(f) = \sum_{i=1}^{n} f_i(1-f_i) = 1 - \sum_{i=1}^{n} f_i^2$$

The Random Forest

Bootstrap and aggregation of a multitude of trees, each grown on a randomly selected set of indicators and observations. ↓ Robust technique

Data	Predictive model	Results	Out-of-sample
000	00	•0	0
	0	00	

Conclusion o

Random forest performance

AUROC=0.94, out-of-sample missclassification=7%

Predictive mo

Results

Out-of-sample o Conclusion o

Random Forest ranking

Key indicators

Intro	Da
0	00

Predictive model

Results ○○ ●○ Out-of-sample

Conclusion o

Early warning tree

Intro	In	tro	
0		ιυ	
	0		

Predictive model

Out-of-sample

Conclusion o

Evaluation metrics

	Crisis	No Crisis
Signal	A	В
No signal	С	D

		$\theta = 2/3$
TPR	$\frac{A}{A+C}$	85%
FPR (Type II error)	$\frac{B}{B+D}$	4%
Type I error	$\frac{C}{A+C}$	15%
N2S	$\frac{B}{B+D}/\frac{A}{A+C}$	5%
Loss	$ heta rac{C}{A+C} + (1- heta) rac{B}{B+D}$	0.12
Usefulness	$\min[\theta; 1-\theta] - Loss$	0.22
Rel. Usefulness	$\frac{Usefulness}{\min[\theta; 1-\theta]}$	0.65

Intro

Predictive mo

Results

Out-of-sample

Conclusion o

Out-of-sample exercise

Imagine you were in mid-2006

	Crisis	No crisis
Warning	FR, IE, ES,	FI, IT
	SE, DK, UK	
No warning	GR, PT, LV,	AU, BE, LU, DE,
	SI, NL	AU, BE, LU, DE, EE, SK, MT, CY*

*Crisis started beyond prediction horizon

Conclusion

- The Random Forest/Early Warning methodology can become a useful quantitative tool to:
 - spur discussion on country risks
 - provide information on the most appropriate policy instrument to address identified vulnerabilities
- Additional relevant (potentially country specific) information can be included