Sökalternativ
Hem Media Förklaringar Forskning och publikationer Statistik Penningpolitik €uron Betalningar och marknader Karriär och jobb
Förslag
Sortera efter
Inte tillgängligt på svenska

Özgür Şimşek

22 November 2021
WORKING PAPER SERIES - No. 2614
Details
Abstract
We develop early warning models for financial crisis prediction by applying machine learning techniques to macrofinancial data for 17 countries over 1870–2016. Most nonlin-ear machine learning models outperform logistic regression in out-of-sample predictions and forecasting. We identify economic drivers of our machine learning models using a novel framework based on Shapley values, uncovering nonlinear relationships between the predic-tors and crisis risk. Throughout, the most important predictors are credit growth and the slope of the yield curve, both domestically and globally. A flat or inverted yield curve is of most concern when nominal interest rates are low and credit growth is high.
JEL Code
C40 : Mathematical and Quantitative Methods→Econometric and Statistical Methods: Special Topics→General
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
E44 : Macroeconomics and Monetary Economics→Money and Interest Rates→Financial Markets and the Macroeconomy
F30 : International Economics→International Finance→General
G01 : Financial Economics→General→Financial Crises

Vår webbplats använder kakor (cookies)

Vi använder funktionella kakor för att lagra användarpreferenser, analyskakor för att förbättra webbplatsens prestanda och kakor från tredje part av tredjepartstjänster som är integrerade på webbplatsen.

Du kan välja att godkänna eller inte godkänna användningen av kakor. För mer information och för att se över dina inställningar för de kakor och servrar som vi använder klicka på:

Läs vår integritetspolicy

Läs mer om hur vi använder kakor